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ABOUT DEPARTMENT 

 Established in: 2002 

 Course offered  :  B.Tech in Electronics and Communication Engineering 

M.Tech in VLSI 

 Approved by AICTE New Delhi and Accredited by NAAC 

 Affiliated to the A P J Abdul Kalam Technological University. 

DEPARTMENT VISION 

Provide well versed, communicative Electronics Engineers with skills in Communication 

systems with corporate and social relevance towards sustainable developments through quality 

education. 

DEPARTMENT MISSION 

1) Imparting Quality education by providing excellent teaching, learning environment. 

2) Transforming and adopting students in this knowledgeable era, where the electronic 

gadgets (things) are getting obsolete in short span. 

3) To initiate multi-disciplinary activities to students at earliest and apply in their respective 

fields of interest later. 

4) Promoting leading edge Research & Development through collaboration with academia 

& industry. 

PROGRAMME EDUCATIONAL OBJECTIVES 

PEO1. To prepare students to excel in postgraduate programmes or to succeed in industry / 

technical profession through global, rigorous education and prepare the students to practice and 

innovate recent fields in the specified program/ industry environment. 

PEO2. To provide students with a solid foundation in mathematical, Scientific and engineering 

fundamentals required to solve engineering problems and to have strong practical knowledge 

required to design and test the system. 

PEO3. To train students with good scientific and engineering breadth so as to comprehend, 

analyze, design, and create novel products and solutions for the real life problems. 

PEO4.  To provide student with an academic environment aware of excellence, effective 

communication skills, leadership, multidisciplinary approach,  written ethical codes and the life-

long learning needed for a successful professional career. 

 

 

 



  

PROGRAM OUTCOMES (POS) 

Engineering Graduates will be able to: 

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering 

fundamentals, and an engineering specialization to the solution of complex 

engineering problems. 

2. Problem analysis: Identify, formulate, review research literature, and analyze 

complex engineering problems reaching substantiated conclusions using first 

principles of mathematics, natural sciences, and engineering sciences. 

3. Design/development of solutions: Design solutions for complex engineering 

problems and design system components or processes that meet the specified needs 

with appropriate consideration for the public health and safety, and the cultural, 

societal, and environmental considerations. 

4. Conduct investigations of complex problems: Use research-based knowledge and 

research methods including design of experiments, analysis and interpretation of data, 

and synthesis of the information to provide valid conclusions. 

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and 

modern engineering and IT tools including prediction and modeling to complex 

engineering activities with an understanding of the limitations. 

6. The engineer and society: Apply reasoning informed by the contextual knowledge to 

assess societal, health, safety, legal and cultural issues and the consequent 

responsibilities relevant to the professional engineering practice. 

7. Environment and sustainability: Understand the impact of the professional 

engineering solutions in societal and environmental contexts, and demonstrate the 

knowledge of, and need for sustainable development. 

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities 

and norms of the engineering practice. 

9. Individual and team work: Function effectively as an individual, and as a member or 

leader in diverse teams, and in multidisciplinary settings. 

10. Communication: Communicate effectively on complex engineering activities with the 

engineering community and with society at large, such as, being able to comprehend 

and write effective reports and design documentation, make effective presentations, 

and give and receive clear instructions. 

11. Project management and finance: Demonstrate knowledge and understanding of the 

engineering and management principles and apply these to one’s own work, as a 

member and leader in a team, to manage projects and in multidisciplinary 

environments. 

12. Life-long learning: Recognize the need for, and have the preparation and ability to 

engage in independent and life-long learning in the broadest context of technological 

change. 

PROGRAM SPECIFIC OUTCOMES (PSO) 

PSO1: Facility to apply the concepts of Electronics, Communications, Signal processing, 

VLSI, Control systems etc., in the design and implementation of engineering systems. 

PSO2: Facility to solve complex Electronics and communication Engineering problems, 

using latest hardware and software tools, either independently or in team.optimization. 
 

 

 



  

COURSE OUTCOMES 
EC 303 

 

SUBJECT CODE: EC 302 

COURSE OUTCOMES 

C303.1 Ability to apply basic mathematical concepts related to electromagnetic 
vector fields. 

 

C303.2 Ability to apply Maxwell’s equations in  the analysis and application of 
electromagnetic fields. 

 

C303.3    Ability to apply a solid foundation and a fresh perspective in the analysis 
and application of electromagnetic fields. 

C303.4 Ability to analyze the propagation of electromagnetic waves in different media. 
 

C303.5 Ability to analyze the characteristics of transmission lines and use Smith chart. 
 

C303.6 Ability To apply the different modes of propagation in waveguides. 
 

 

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES 

CO’S PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 

C303.1   3         1 

C303.2 2 3 3  2   2    1 

C303.3 2 3 3 3 2 3 2    2 1 

C303.4  3 3 3  3      1 

C303.5   3  2       1 

C303.6   3 3   2     1 

C303 2 3 3 3 2 3 2 2   2 1 

 

 

CO’S PSO1 PSO2 PSO3 

C303.1    

C303.2 3   

C303.3 3 3 2 

C303.4 3 3 2 

C303.5    

C303.6    

C303 3 3 2 

 

 

 

 

 

 

 

 

 

 



  

SYLLABUS 

 
COURSE 

CODE 

 

COURSE NAME 
 

L-T-P-C 
YEAR OF 

INTRODUCTION 

EC 303 Applied Electromagnetic Theory 3-0-0-3 2015 

Prerequisite: MA201 Linear Algebra & Complex Analysis, MA 101Calculus, MA 102 
Differential equations 

Course objectives: 

The purpose of this course is: 
1. To introduce basic mathematical concepts related to electromagnetic vector fields. 

2. To impart knowledge on the basic concepts of electric and magnetic fields 

3. To develop a solid foundation in the analysis and application of electromagnetic fields, 

Maxwell’s equations and Poynting theorem. 

4. To become familiar with propagation of signal through transmission lines and 

waveguides. 

Syllabus: 

Co-ordinate transformation, vector algebra, vector calculus, electrostatics, magneto statics, 

Maxwell’s equations, Boundary condition, Solution of wave equation, propagation of plane 

EM wave in different media, Poynting vector theorem, transmission lines, Smith chart, 

Waveguides. 

Expected outcome: 

At the end of the course, students shall be able: 
1. To develop a solid foundation and a fresh perspective in the analysis and application of 

electromagnetic fields. 

2. To analyse the propagation of electromagnetic waves in different media. 
3. To analyze the characteristics of transmission lines. 

4. To understand the different modes of propagation in waveguides. 

Text Books: 

1. Mathew N O Sadiku, Elements of Electromagnetics, Oxford University Press, 6/e, 2014. 
2. William, H., Jf Hayt, and John A. Buck. Engineering Electromagnetics. McGraw-Hill, 

8/e McGraw-Hill, 2014. 
3. John D. Kraus, Electromagnetics, 5/e, TMH, 2010. 

References: 

1. Joseph A Edminister , Electromagnetics, Schaum‘s Outline Series McGraw Hill, 4/e, 

1995 

2. Nannapaneni Narayana Rao, Elements of Engineering Electromagnetics, Pearson, 6/e, 

2006. 

3. Umran S. Inan and Aziz S. Inan, Engineering Electromagnetics, Pearson, 2010. 

4. Martin A Plonus , Applied Electromagnetics, McGraw Hill, 2/e,1978. 

5. Jordan and Balmain , Electromagnetic waves and Radiating Systems, PHI, 2/e,2013 

6. Matthew N.O. Sadiku & S.V. Kulkarni "‘Principles of Electromagnetics’, Oxford 

University Press Inc. Sixth Edition, Asian Edition,2015 

http://www.ktustudents.in/
http://www.ktustudents.in/


  

Course Plan 

Module Course content 
Hours 

Sem. Exam 
Marks 

 

 

 

 

 

 

 

I 

Review of vector calculus, Spherical and Cylindrical 
coordinate system, Coordinate transformation 

1  
0 

Curl, Divergence, Gradient in spherical and cylindrical 
coordinate system. 

1 

Electric field – Application of Coulomb’s law, Gauss law 

and Amperes current law (proof not required, simple 
problems only) 

 

1 
 

 

 

 

 
15 

Poisson and Laplace equations (proof not required, 
simple problems only), Determination of E and V using 

Laplace equation. 

 

1 

Derivation of capacitance and inductance of two wire 

transmission line and coaxial cable. Energy stored in 
Electric and Magnetic field. 

 

2 

Displacement current density, continuity equation. 

Magnetic vector potential. Relation between scalar 
potential and vector potential. 

 

2 

 

 

 
II 

KT 

Maxwell’s equation from fundamental laws. 1  

 

 
15 

T 

Boundary condition of electric field and magnetic field 
from Maxwell's equations 

1 

Solution of wave equation 1 

um, good conductor, media-attenuation, phase 
velocity, group velocity, skin depth. 

 

3 

 FIRST INTERNAL EXAM  

 

 

 
III 

Reflection and refraction of plane electromagnetic waves 

at boundaries for normal & oblique incidence (parallel 

and perpendicular polarization), Snell’s law of refraction, 
Brewster angle. 

 
4 

 

 

 
15 

Power density of EM wave, Poynting vector theorem, 
Complex Poynting vector. 

3 

Polarization of electromagnetic wave-linear, circular and 
elliptical polarisation. 

2 

 
 

IV 

Uniform lossless transmission line - line parameters 1  
 

15 
Transmission line equations, Voltage and Current 
distribution of a line terminated with load 

2 

Reflection coefficient and VSWR. Derivation of input 
impedance of transmission line. 

2 

SECOND INTERNAL EXAM 

 

 

V 

Transmission line as circuit elements (L and C). 2  

 

20 

Half wave and quarter wave transmission lines. 1 

Development of   Smith   chart   -   calculation   of   line 
impedance and VSWR using smith chart. 

2 

Single stub matching (Smith chart and analytical 
method). 

2 

http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
http://www.ktustudents.in/
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VI 

Parallel-Plate Waveguide - TE & TM waves. 1  

 
20 

The hollow rectangular wave guide – modes of 
propagation of wave- dominant mode, group velocity and 

phase velocity -derivation and simple problems only. 

 

3 

Attenuation in wave guides, guide wavelength and 
impedance -derivation and simple problems only . 

3 

END SEMESTER EXAM 
 

Question Paper 

The question paper shall consist of three parts. Part A covers I and II module, Part B covers III and 

IV module, Part C covers V and VI module. Each part has three questions, which may have 

maximum four subdivisions. Among the three questions, one will be a compulsory question covering 

both modules and the remaining from each module, of which one to be answered. Mark patterns are 

as per the syllabus with 50 % for theory and 50% for logical/numerical problems, derivation and 

proof. 
 

 

 

 

 

 

 

 

 
Question Paper Pattern ( End Semester Exam) Maximum 

Marks : 100 Time : 3 hours 

The question paper shall consist of three parts. Part A covers modules I and II, Part B covers 

modules III and IV, and Part C covers modules V and VI. Each part has three questions uniformly 

covering the two modules and each question can have maximum four subdivisions. In each part, any 

two questions are to be answered. Mark patterns are as per the syllabus with 30% for theory and 70% 

for logical/numerical problems, derivation and proof. 
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QUESTION BANK 

 

MODULE I 

 

Q:NO

: 

 

QUESTIONS 

 

CO 

 

KL 

 

PAG

E 

NO: 

1 What is Electromagnetics? Provide its various applications.  CO1 K1 1  

2 State and explain Gauss’ Law using mathematical equations. Give 

its applications. 
CO1 K2 18  

3 Differentiate between Scalars, Vectors and Fields with the use of 

examples.                              
CO1 K2  2 

4 Construct the Cylindrical Coordinate systems to mark a point P 

and explain the relevance of the variables. 
CO1 K3 3  

5 Define Curl of a Vector and provide its physical significance. State 

its properties.                         
CO1 K1 11 

6 State and explain Coulomb’s Law using mathematical equations. 

Give its applications. 
CO1 K2 16 

7 Define Gradient of a Scalar and Divergence of a Vector and 

provide its physical significances. State its properties.  
CO1 K2 8 

8 State and explain Stokes’s Theorem with the aid of a diagram and 

mathematical equations. 
CO1 K2 7 

9 Define Laplacian of a Scalar and provide its physical significance. 

State its properties.              
CO1 K2 14 

10 State and explain Laplace’s Law using mathematical equations. 

Determine E and V using this equation.  
CO1 K3 28 

11 Define Gradient of a Scalar and Curl of a Vector and provide its 

physical significances. State its properties.  
CO1 K2 11 

12 State and explain Divergence Theorem with the aid of a diagram 

and mathematical equations. 
CO1 K3 27 

13 State clearly the rules for transformation between Rectangular and 

Cylindrical Coordinate system and vice versa.    
CO1 K2 3 

14 State clearly the rules for transformation between Cartesian and 

Spherical Coordinate system and vice versa.    
CO1 K2 3 

15 State clearly the rules for transformation between Cylindrical and 

Spherical Coordinate system and vice versa.    
CO1 K2 3 

16 Differentiate between convection current and conduction current 

with the aid of examples. 
CO1 K2 24 
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MODULE II 

1 Derive Maxwell’s first equation from Faraday’s law with the aid of 

a diagram. 
CO2 K3 31 

2 From first principles, derive Maxwell’s second equation from 

Ampere’s law. Represent it for time-harmonic signals. 
CO2 K3 35 

3 State and explain Maxwell’s equations in both differential and 

integral forms.  Represent it for time-harmonic signals. 
CO2 K2 36 

4 Describe Electrostatic Screening or Shielding  CO2 K2 44 

5 Derive and explain Wave Equations using Maxwell’s equations. CO2 K3 48 

6  Evaluate the Magnetic Boundary Conditions for a Dielectric-

Dielectric interface with the help of diagrams.  
CO2 K4 45 

7 Evaluate the Electrostatic Boundary Conditions for a Conductor-

Free Space interface with the help of a diagram.  
CO2 K4  40 

8   Evaluate the Electrostatic Boundary Conditions for a Dielectric-

Conductor interface with the help of a diagram.  
CO2 K4 41 

9 Derive and explain Helmholtz Wave Equations using Maxwell’s 

equations. 
CO2 K3 48 

10 Evaluate the Electric Boundary Conditions for a Dielectric-

Dielectric interface with the help of diagrams.  
CO2 K4 42 

11 Evaluate the Electric Boundary Conditions for a Free Space-

Conductor interface with the help of diagrams.  
CO2 K4 43 

12 Evaluate the Magnetostatic Boundary Conditions for a Dielectric-

Dielectric interface with the help of a diagram.  
CO2 K4 49 

13 Define the following terms and give units: Phase velocity, Skin 

effect, Group velocity, Propagation Constant, Attenuation constant, 

Phase constant, Intrinsic Impedance 

CO2 K1 54 

14 Write down the complex relations for Phase constant and intrinsic 

impedance for a general medium. Construct the simplified equation 

for a lossless medium, free space and good conductor medium. 

CO2 K3 55 

 

MODULE III 

1 Analyze the Helmholtz’s Wave Equations for EM Wave 

propagation in Lossy Dielectrics with the aid of Maxwell’s 

equations for time harmonic signals and provide solution of the 

Wave Equations for both E field and H field.  

CO3 K4  56 

2 Analyze the propagation of plane waves in Lossless dielectrics.  CO3 K5 57 

3 Analyze the propagation of plane waves in good conductors. CO3 K4 58 

4 State and explain Poynting’s Theorem. From first principles, 

derive the equation governing this theorem for the power flow due 
CO3 K3 59 
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to EM waves. 

5 Define Skin Depth. Analyze the Skin resistances with the aid of 

diagram and equations.  
CO3 K4 60 

6 Investigate Reflection and Refraction of plane EM waves at 

boundaries for normal incidence, with the aid of diagrams and 

supporting mathematical analysis. 

CO3 K3 64 

7 Explore Reflection and Refraction of plane EM waves at 

boundaries for oblique incidence, with the aid of diagrams and 

supporting mathematical analysis. 

CO3 K3 73 

8 Using diagrams, describe the parallel and perpendicular 

polarization of plane waves.  
CO3 K2 75 

9 State and explain Snell’s law of Refraction and Brewster angle.  CO3 K2 76 

10 Analyze the linear polarization of EM waves, with the aid of 

diagrams. 
CO3 K4 81 

 

MODULE IV 

1 State what is meant by a Transmission Line and what information is 

conveyed by it? What are the types, explain with neat diagrams, and 

clearly mention the area of application?  

CO4 K2 89 

2 Describe the Transmission Line parameters with the aid of 

diagrams, clearly mentioning the difference between lumped and 

distributed components. Obtain the mathematical relationship 

between them.  

CO4 K2 90 

3 From first principles, derive quantitatively the V and I Wave 

Equations (Transmission Line Equations), with the aid of diagrams. 

State the relevance of each and every term in the final expression.  

CO4 K3 92 

4 Analyse the solution of the V and I Wave Equations (Transmission 

Line Equations) to quantify Characteristic Impedence, Characteristic 

Admittance, and Propagation constant for a general lossy type 

Transmission line.  

CO4 K2 94 

5 Describe the two special cases of Transmission lines with the aid of 

supporting analysis to formulate the expressions for Characteristic 

Impedence, Propagation constant and phase velocity for each type.  

CO4 K2 96 

6 An air-line has characteristic impedance of 80 Ω and phase constant 

of 4 rad/m at  140 MHz. Calculate the inductance per meter and the 

capacitance per meter of the line. 

CO4 K3 102 

7 Explore Reflection and Refraction of plane EM waves at boundaries 

for oblique incidence, with the aid of diagrams and supporting 

mathematical analysis. 

CO4 K3 103 

8 Derive the general expression for the Input Impedence of a lossy 

transmission line in terms of its electrical length.  
CO4 K3 104 
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9 Analyse the Reflection Coefficient and Standing Wave Ratio 

quantitatively for a transmission line.  
CO4 K4 108 

10 Derive the equation for Power on transmission line. CO4 K3 110 

11 Analyse the open circuited transmission line, short circuited 

transmission line and perfectly matched transmission lines.  
CO4 K4 112 

12 Analyse the half wave transmission line and quarter wave line and 

provide its application areas. 
CO4 K4 114 

 

MODULE V 

1 Analyze the Smith Chart mathematically from first principles to 

obtain the closed loop equation for r-and z-circles, with the aid of 

succinct sketches.  State the relevance of s-circles.  

 

CO5 K4 119 

2 

  

CO5 K3 144  

3 Describe the Quarter wave Transformer matching used for 

Transmission lines with the aid of neat diagram.  
CO5 K2 151  

4 Analyse the Single Stub Tuner mathematically with the aid of 

diagram and provide qualitative details of applying the Smith chart 

with the aid of an appropriate sketch of the rough Smith chart.   

CO5 K4 154 

5 A 100 Ω lossless transmission line is to be matched to a load of 100-

j80Ω, utilizing a shorted stub assuming an operating frequency of 

20MHz and wave velocity of 0.6c, where c is the speed of light in 

vacuum. 

CO5 K3 160 

6 Use the Smith Chart to do this problem. 

 

CO5 K3 161 

MODULE VI 

1 Explain the Parallel-Plate Waveguide with the help of diagrams and 

give details of the EM wave propagation in it.  
CO6 K2 169 

2 Perform the detailed Analysis of Parallel-Plate Waveguide using 

Wave equations to get the expressions for E field and H field 
CO6 K4 172 
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strengths. 

3 A parallel-plate waveguide has plate separation d = 1 cm and is 

filled with Teflon having dielectric constant r = 2.1. Determine the 

maximum operating frequency such that only the TEM mode will 

propagate. Also find the range of frequencies over which the TE1 

and TM1 (m = 1) modes, and no higher-order modes, will propagate. 

CO6 K3 178 

 
4 

In the parallel-plate guide of Q3, the operating wavelength is λ = 2 

mm. How many waveguide modes will propagate? 
CO6 K3 178 

5 In the guide of Q3, the operating frequency is 25 GHz. 

Consequently, modes for which           m = 1 and m = 2 will be 

above cutoff. Determine the group delay difference between these 

two modes over a distance of 1 cm. 

CO6 K3 179 

6 Explain the qualitative details of hollow Rectangular Waveguide 

with the aid of simple diagram, how different is it from transmission 

line in principle and applications.  

CO6 K2 181 

7 Justify qualitatively and quantitatively the non-existence of TEM 

waves in hollow rectangular wave guides.  
CO6 K2 184 

9 Analyze the hollow Rectangular Waveguide to obtain the general 

expressions for the  pertinent components of the E field and H Field 

strengths for Transverse Electric (TE) modes of propagation in the 

waveguide. 

 

CO6 K4 185 

10 Analyze the hollow Rectangular Waveguide to obtain the general 

expressions for the pertinent components of the E field and H Field 

strengths for Transverse Magnetic (TM) modes of propagation in 

the waveguide. Ponder upon the modes of propagation in the 

waveguide.  

CO6 K4 192 

 

 

APPENDIX 1 

 

CONTENT BEYOND THE SYLLABUS 

S:NO; TOPIC PAGE NO: 

1 Circular Waveguides and Optical fiber wave propagation 202 
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Applied Electromagnetic Theory 

EC303 Module-1 

Electromagnetics (EM) 
• Electromagnetics (EM) is the study of the interactions 

between electric charges at rest and in motion.  

• It involves the analysis, synthesis, physical 
interpretation, and application of electric and magnetic 
fields. 

• Electromagnetics (EM) is a branch of Physics or 
Electrical Engineering in which electric and magnetic 
phenomena are studied. 

• EM principles find applications in various related 
disciplines such as: 

• microwaves, antennas, electric machines, satellite 
communications, bio-electromagnetics, plasmas, 
nuclear research, fiber optics, electromagnetic 
interference and compatibility, electromechanical 
energy conversion, radar meteorology, and remote 
sensing. 
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SCALARS AND VECTORS 
• A scalar is a quantity that has only magnitude. 

• Quantities such as time, mass, distance, temperature, 
entropy, electric potential, and population are scalars. 

• A vector is a quantity that has both magnitude and 
direction. 

• Vector quantities include velocity, force, displacement, 
and electric field intensity. 

• represent a vector by a letter with an arrow on top of it, 
such as A and B, or by a letter in boldface type such as A 
and B.  

• A scalar is represented simply by a letter—e.g., A, B, U, 
and V. 

• EM theory is essentially a study of some particular fields. 

 

Field 

• A Field is a function that specifies a particular 

quantity everywhere in a region. 

• If the quantity is scalar (or vector), the field is 

said to be a scalar (or vector) field.  

• Examples of scalar fields are temperature 

distribution in a building, sound intensity in a 

theater, electric potential in a region, and 

refractive index of a stratified medium.  

• The gravitational force on a body in space and 

the velocity of raindrops in the atmosphere 

are examples of vector fields. 
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COORDINATE SYSTEMS & 

TRANSFORMATION 

 
• An orthogonal system is one in which the 

coordinates are mutually perpendicular. 

• The Cartesian, the Circular Cylindrical, and the 

Spherical are three different Coordinate systems. 

 

 

 

Cartesian or Rectangular Co-ordinate 

system  
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• A point P can be represented as (x, y, z) 

• The ranges of the coordinate variables x, y, 

and z are: 

 

 

• A vector A in Cartesian coordinates can be 

written as: 

 

• where ax, ay, and az are unit vectors along the 

x-, y-, and z-directions. 

CIRCULAR CYLINDRICAL 

COORDINATES (            ) 

• This is applicable for with problems having 

cylindrical symmetry. 

 A point P in cylindrical 

coordinates is represented as 

( ) 
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• ρρρρ is the radius of the cylinder passing through 

P or the radial distance from the z-axis. 

•  φφφφ called the azimuthal angle, is measured 

from the x-axis in the xy-plane. 

•  and z is the same as in the Cartesian system.  

• The ranges of the variables are:  

 

 

• A vector A in cylindrical coordinates can be 

written as: 

 

• where aρ, aφ, and az are unit vectors in the ρ-, 

φ-, and z-directions. 

• The relationships between the variables              

(x, y, z) of the Cartesian coordinate system and 

those of the cylindrical system (ρ, φ, z) : 

 

 

 

• In matrix form, the transformation of vector A 

from (Ax, Ay, Az) to(Aρ, Aφ, Az) or vice versa as: 

 

 

 

Or  
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SPHERICAL COORDINATES (r,  θ, φ) 
• Spherical coordinate system is used when dealing 

with problems with a degree of spherical symmetry. 

• A point P can be represented as (r, θ, φ) and r is 

defined as distance from origin to point P or radius 

of a sphere centered at origin and passing thro’ P. 

• θ (called the Colatitude) is the angle between z-axis 

and the position vector of P.  

• φ is measured from x-axis (the same azimuthal angle 

in cylindrical coordinates).  

• The ranges of the variables are 
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• A vector A in spherical coordinates may be 

written as: 

 

• where ar , aθ, and aφ are unit vectors along the 

r-, θ-, and φ- directions.  

• The magnitude of A is 

• The space variables (x, y, z) in Cartesian  

coordinates can be related to variables (r, θ, φ) 

of a spherical coordinate system: 

• In matrix form, the vector transformation is 

performed as follows: 
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DEL((   ) OPERATOR 

• This vector differential operator, or gradient 

operator, is not a vector but when it operates 

on a scalar function, a  vector arises.  

• The operator is useful to define: 

Cartesian coordinates 

Gradient of a scalar  

• The gradient of a scalar field V is a vector that 

represents both magnitude and direction of 

the max  space rate of increase of V.  
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Divergence  

 
• Divergence of the vector field A at a given 

point is a measure of how much the field 

diverges or emanates from that point. 

• In case (a) the divergence of a vector field at 

point p is positive because the vector diverges 

at p.  

• In case (b) the divergence of vector field at 

point p is negative because the vector 

converges at p.  

• In case (c) the vector field has zero divergence 

at p. 

• Divergence of a vector field represents the 

rate of change of the field strength in the 

direction of the field.  
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DIVERGENCE OF A VECTOR 

• The divergence of A at a given point P is the 

outward flux per unit volume as the volume 

shrinks about P. 

 

 

 

Note the following properties of the divergence of a 

vector field: 

The divergence theorem states that the total outward flux of 

 a vector field A  through the closed surface �  is the same  

as the volume integral of the divergence of A.  
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CURL OF A VECTOR 

The curl of A is an axial or rotational vector whose 

magnitude is max circulation of A per unit area as 

area tends to zero and whose direction is normal 

direction of area when the area is oriented so as to 

make circulation max.  

Where the area ΔS is 

bounded by the 

curve L and an is the 

unit vector normal to 

the surface ∆S.  
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• The curl provides the max value of the 
circulation of the field per unit area and 
indicates the direction along which this max 
value occurs.  

• The curl of a vector field A at a point P may be 
regarded as a measure of the circulation or 
how much the field curls around P .  
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Stoke’s theorem  

• Stoke’s theorem states that the circulation of a 

vector field A around a (closed) path L is equal 

to the surface integral of the curl of A over the 

open surface S bounded by L provided that A 

and ∇× A are continuous on S.  

• The direction of dl and dS must be chosen using the 

right-hand rule or right-handed screw rule.  

• Using the right-hand rule, if we let the fingers point 

in the direction of dl , the thumb will indicate the 

direction of dS . 

• Note that whereas the divergence theorem relates a 

surface integral to a volume integral, Stokes's 

theorem relates a line integral (circulation) to a 

surface integral. 
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Laplacian of a Scalar 

• The Laplacian of a scalar field V written as        V  

• It is the divergence of the gradient of V.  

∴ 

• Notice that the Laplacian of a scalar field is 
another scalar field. 

• A scalar field V is said to be Harmonic in a 
given region if its Laplacian vanishes in that 
region.   i.e., 

• This is called Laplace's equation. 

• Laplacian of a vector A is given by: 

 

• This is defined as the gradient of the 
divergence of A minus the curl of the curl of A. 

• In the Cartesian system� 
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Simple Problems…. 

Find the Laplacian of the scalar field 

Sol:  

Sin 2x 

Exercise… 

i. 

ii. 
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Coulomb‘s Law 

• Coulomb's law states that the force between 

two point charges Q1, and Q2  is: 

• 1. Along the line joining them 

• 2. Directly proportional to the product Q1.Q2 

of the charges. 

• 3. Inversely proportional to the square of the 

distance R between them. 

k� proportionality constant.  

permittivity of free space (in farads per meter) 



25-Sep-20 

17 

Electric field strength 
• The electric field intensity (or electric field 

strength) E is the force per unit charge when 

placed in the electric field. 

• The electric field intensity E is obviously in the 

direction of the force F and is measured in 

N/Coul or Volts/meter.  

• The electric field intensity at point r due to a 

point charge located at r‘: 

 

 

ELECTRIC FLUX DENSITY 

• The electric flux density is dependent on the 
medium in which the charge is placed and is 
defined by:  

• Define electric flux f in terms of D: 

 

 

• The electric flux is measured in coulombs, the 
vector field D is called the electric flux density 

and is measured in coulombs per square 
meter. 
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Gauss‘s Law 

• Gauss's law stales that the total electric flux Ψ 

through any closed surface is equal to the 

total charge enclosed by that surface. 

 

By applying divergence theorem: 

The volume charge density is the same as the 

divergence of the electric flux density. 

∴∴∴∴ 

∴∴∴∴ 
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Electric Potential 
• The electric field intensity E due to a charge 

distribution can be obtained from Coulomb's 
law in general or from Gauss's law when the 
charge distribution is symmetric.  

• Another way of obtaining E is from the electric 
scalar potential V 

• This way of finding E is easier because it is 
easier to handle scalars than vectors.  
 

• To move a point charge Q from one point to 
another in an electric field E, from Coulomb's 
law, the force on Q is F = QE so that the work 
done in displacing the charge by dl is: 

• dW = - F. dl= -QE.dl 
• The negative sign indicates that the work is 

being done by an external agent.  
• Thus the total work done, or the potential 

energy required, in moving Q from A to B is: 
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• if the E field is due to a point charge Q located 
at the origin, then: 
 
 
  

 

• Thus if VA = 0 as rA  ∞ the potential at any 
point (rB —> r) due to a point charge Q located 
at the origin is: 
 
 

• the potential at a distance r from the point 
charge is the work done per unit charge by an 
external agent in transferring a test charge 
from infinity to that point.  

 
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• Potential difference between points A and B is 
independent of  the path taken. 
 
 
 
 
 

• The line integral of E along a closed path must 
be zero.  

• Physically, this implies that no net work is 
done in moving a charge along a closed path 
in an electrostatic field. 
 

 

 

 

• Applying Stokes's theorem: 
 
 
 

• Any vector field that satisfies this relation is 
said to be conservative, or irrotational. 

• Thus an electrostatic field is a conservative 
field. Equation is referred to as Maxwell's 
equation for static electric fields. 
 

 
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Comparing the two expressions for dV, we obtain 

The electric field intensity is the gradient of V.  
The negative sign direction of E is opposite to the direction in 
which V increases. 
 E is directed from higher to lower levels of V. 

 

 

Poisson‘s And Laplace‘s Equations 
• Poisson's and Laplace's equations are derived 

from Gauss's law. 
 
 
 
 

This is known as Poisson's equation. 

 

 
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A special case of this equation occurs when v = 0  
(i.e., for a charge-free region) 

This is known as Laplace's equation 

 
• Laplace's equation is important in solving electrostatic 

problems involving a set of conductors maintained at 
different potentials.  

• Examples include capacitors and vacuum tube diodes.  
• Laplace's and Poisson's equations are also useful in 

various other field problems. 

 

• For example, V would be interpreted as: 
•  magnetic potential in Magnetostatic 
• temperature in heat conduction,  
• stress function in fluid flow,  
• pressure head in seepage. 
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Convection and Conduction Currents 
• The current (in amperes) through a given area is 

the electric charge passing through the area per 
unit time. 
 

• Thus in a current of one ampere, charge is being 
transferred at a rate of one coulomb/sec. 

• We now introduce the concept of current 
density J.  

• If current I flows through a surface S, the 
current density is: 

assuming that the current density is perpendicular to the surface.  
If the current density is not normal to the surface, 

Thus, the total current flowing through a surface S is 

Convection current, as distinct from conduction current, does not 
involve conductors and consequently does not satisfy Ohm's law.  
It occurs when current flows through an insulating medium such as 
liquid, rarefied gas, or a vacuum.  
A beam of electrons in a vacuum tube, for example, is a convection 
current. 

The current I is the convection current and J is the convection 
current density in amperes/square meter (A/m2). 
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• Conduction current requires a conductor.  
• A conductor is has large amount of free electrons that 

provide conduction current due an impressed electric 
field. 

Thus the conduction current density is: 

J=E 

where  is the conductivity of the conductor.  
The relationship is known as the point form of Ohm's law. 

CONTINUITY EQUATION 

Due to the principle of charge conservation, the time rate 
of decrease of charge within a given volume must be equal 
to the net outward current flow through the closed surface 
of the volume. 

Thus current Iout coming out of the closed surface is 

where Qin is the total charge enclosed by the closed surface.  

………………..(1) 
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Using  Divergence theorem, 

………………..(2) 

………………..(3) 

Substitute eqns (2) and (3) in eqn (1) gives:  

Continuity equation. 

Terms and Relations in Magnetostatics 
• Permanent Magnet and Poles ( N and S) 
• No isolated Poles 
• Magnetic Field lines and Magnetic Field 

Strength H 
• Magnetic Flux density B 
• Permeability of the medium  = 0 r 

• Relation between Magnetic field strength and 
flux density: B= H 
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AMPERE'S CIRCUIT LAW 
Ampere's circuit law states that the line integral of 
the tangential component of H around a closed path 
is the same as the net current Ienc enclosed by the 
path. In other words, the circulation of H equals Ienc 

  

By applying Stoke's theorem, 

 

Note that: 

 
Magnetostatic field is not conservative.  

MAGNETIC FLUX DENSITY 
The magnetic flux density B is similar to the electric flux 
density D.  
As D = E in free space, the magnetic flux density B is 
related to the magnetic field intensity H according to: 

where 0 is a constant called Permeability of free space.  
The constant is in henrys/meter (H/m) and has the value 
of 4 X 107 H/m 

The magnetic flux through a surface S is given by 

where the magnetic flux  is in Webers (Wb) and the magnetic 
flux density is in Webers/square meter (Wb/m2) or Teslas. 
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• Unlike electric flux lines, magnetic flux lines always 
close upon themselves. 

• This is due to the fact that it is not possible to have 
isolated magnetic poles (or magnetic charges). 

•  For example, if we desire to have an isolated 
magnetic pole by dividing a magnetic bar 
successively into two, we end up with pieces each 
having north and south poles 

• We find it impossible to separate the north pole 
from the south pole. 

• An isolated magnetic charge does not exist. 
• Thus the total flux through a closed surface in a 

magnetic field must be zero; i.e., 

• This equation is referred to as the law of conservation of 
magnetic flux or Gauss's law for Magnetostatic fields.  

• Although the Magnetostatic field is not conservative, 
Magnetic flux is conserved. 

• By applying the divergence theorem: 
 

 

 
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Applied Electromagnetic Theory 

EC303 Module – 2 
 

Maxwell’s Equation from 
fundamental laws.  
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Points to remember…. 
• Through out the lecture, following notations 

will be used… 
• Scalars are represented in plain form i.e. V  
• Vectors will be represented by bold type 

phase i.e., D, J, B, E etc. 
• Use of line integrals, contour or surface 

integrals and  volume integrals will use single 
integral sign with bottom script stating type. 
 

INTRODUCTION 
 • Electrostatic fields denoted by E(x, y, z) and Magnetostatic fields 

represented by H(x, y, z).  
• These are static, or time invariant, EM fields.  
• There is also Electric and magnetic fields that are dynamic, or time 

varying.  
• In static EM fields, electric and magnetic fields are independent of 

each other whereas in dynamic EM fields, the two fields are 
interdependent. 

• A time-varying electric field necessarily involves a corresponding 
time-varying magnetic field.  

• A time-varying EM fields, represented by E(x, y, z, t) and                    
H(x, y, z, t), are of more practical value than static EM fields.  

• Electrostatic fields are usually produced by static electric charges 
whereas Magnetostatic fields are due to motion of electric charges 
with uniform velocity (direct current) or static magnetic charges 
(magnetic poles).  

• Time-varying fields or waves are usually due to accelerated charges 
or time-varying currents.  

• Any pulsating current will produce radiation (time-varying fields). 
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FARADAY'S LAW 
 

• where N is the number of turns in the circuit and V is 
the flux through each turn.  

Lenz's law 
• The induced voltage acts in such a way as to oppose 

the flux producing it.  
• The direction of current flow in the circuit is such that 

the induced magnetic field produced by the induced 
current will oppose the original magnetic field. 
 

 
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A circuit showing emf-producing field and electrostatic field 

where the battery is a source of emf.  
The electrochemical action of the battery results in an 
emf-produced field Ef.  
Due to the accumulation of charge at the battery 
terminals, an electrostatic field Ee also exists. 

• The total electric field at any point is: 
• E = Ef + Ee 
• Note that Ef is zero outside the battery, Ef and 

Ee have opposite directions in the battery, and 
the direction of Ee inside the battery is 
opposite to that outside it. 
 
 

because Ee is conservative. 

 
 
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• For a circuit with a single turn (N = 1), 
 
 
 
 

• The variation of flux caused in three ways: 
– By having a stationary loop in a time-varying B  field 
– By having a time-varying loop area in a static B field 
– By having a time-varying loop area in a time-varying B 

field. 

 
 

 

Stationary loop in a time-varying B  field 
 

• Consider a stationary conducting loop is in a 
time varying magnetic B field. 
 

Induced emf due to a stationary loop in a time 
varying B field.  
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By applying Stokes's theorem: 

• This is one of the Maxwell's equations for time-varying 
fields. It shows that the time varying E field is not 
conservative i.e., not equal to zero.  

• The work done in taking a charge about a closed path in a 
time-varying electric field, for example, is due to the 
energy from the time-varying magnetic field. 

 
 

 

Points to Ponder …. 
• The term J represents the conduction current. 
• The term D is the displacement current. 
• The term Jd = dD/dt is known as Displacement 

Current Density  
•  What is v ? Is it a scalar or vector? 
• What is B ? 
• What is H ? How it relates to B ? 
• What is E ? How it relates to D ? 
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Ampere’s circuital law 
• Ampere’s circuital law states that line integral 

of tangential component of 𝐻 around a closed 
path is same as the net current 𝐼𝑒𝑛𝑐 enclosed 
by the path. 

• Reconsider Ampere's curl equation for 
magnetic fields for time-varying conditions. 

• For static EM fields, 
• But the divergence of the curl of any vector 

field is identically zero, 
 
 
 

 

• The continuity of current however, requires that, 
 
 

• Alas! We have a dilemma due to contradiction! 
• Need to modify and add a term to main so that it 

becomes: 
 

• Again, the divergence of the curl of any vector is 
zero.  

 
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 

 
This is Maxwell's 2nd equation (based on Ampere's 
circuit law) for a time-varying field. 
The term Jd = dD/dt is known as Displacement 
Current Density  

No 

Maxwell’s equations in differential and integral form 
from modified form of Ampere’s circuital law  

• James clerk Maxwell is regarded as the founder of 
electromagnetic theory in present form. 

•  Maxwell’s celebrated work led to the discovery of 
Electromagnetism that Maxwell put together in form 
of four equations.  

• The integral form of Maxwell’s equations depicts the 
underlying physical laws.  

• Whereas the differential form is used in solving 
problems.  

• For a field qualified as electromagnetic field, it must 
satisfy all four Maxwell’s equations.  
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Also the Equation of continuity: 

The Constitutive relations  
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Boundary Conditions 
 • There is commonly the existence of the 

electric field in a homogeneous medium.  
• If the field exists in a region consisting of two 

different media, the conditions that the field 
must satisfy at the interface separating the 
media are called Boundary conditions.  

• These conditions are helpful in determining 
the field on one side of the boundary if the 
field on the other side is known.  

• The conditions will be dictated by the types of 
material the media are made of.  
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• Consider the boundary conditions at an 
interface separating: 
– dielectric (r1) and dielectric (r2) 
– conductor and dielectric 
– conductor and free space 

• To determine the boundary conditions, we need to 
use Maxwell's equations: 
 
 

• Also we need to decompose the electric field 
intensity E into two orthogonal components: 
 Et tangential component of E  

En normal component of E to the 
interface of interest. 

Dielectric-Dielectric Boundary Conditions 
• Consider the E field existing in a region 

consisting of two different dielectrics 
characterized by 1= 0 r1 and 2= 0 r2  
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We apply eq. 1 to the closed path abcda assuming that 
the path I very small w.r.t., the variation of E. 

Thus the tangential components of E are the same on the 
two sides of the boundary.  
So E, undergoes no change on the boundary and it is said 
to be Continuous across the boundary. 

 

Since D = E = Dt + Dn 

i.e., Dt undergoes some change across the interface. 
Hence Dt is said to be Discontinuous across the interface. 

 
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Similarly, we apply eq. (2) to the pillbox (Gaussian surface) 
of Figure (b). Allowing h —> 0 gives, 

where s is the free charge density placed deliberately 
at the boundary.  
This is based on the assumption that D is directed from 
region 2 to region 1.  
If no free charges exist at the interface (i.e., charges are 
not deliberately placed there), s = 0 

Thus the normal component of D is continuous across the 
interface; i.e., Dn undergoes no change at boundary. 

 

 

Since D = E, 

shows that the normal component of E is discontinuous 
at the boundary. 

Equations are collectively referred to as Boundary 
conditions. 
They must be satisfied by an electric field at the boundary 
separating two different dielectrics. 

 



03-10-2020 

1 

Conductor-Dielectric Boundary Conditions 

Conductor-dielectric boundary 

• The conductor is assumed to be perfect (--> 
∞ or c--> 0).  

• Although such a conductor is not practically 
realizable, regard conductors such as copper and 
silver as though they were perfect conductors. 

• To determine the boundary conditions for a 
conductor-dielectric interface, follow the same 
procedure used for dielectric-dielectric interface 
except that E = 0 inside the conductor.  

• Applying) to the closed path abcda of gives: 
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As h --> 0,         Et = 0 

Similarly, by applying  second eqn to the pillbox of Figure 
(b) and letting h —> 0,  

 

 

Thus under static conditions, the following conclusions can 
be made about a perfect conductor: 

1. No electric field may exist within a conductor; that is, 

2. Since E= -    V = 0, there can be no potential difference 
between any two points in the conductor; i.e., a 
conductor is an equipotential body. 
3. The electric field E can be external to the conductor 
and normal to its surface; i.e., 
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Electrostatic Screening or Shielding 
 • An important application of the fact that E = 0 inside a 

conductor is in electrostatic screening or shielding.  
• If conductor A kept at zero potential surrounds conductor B 

as shown, B is said to be electrically screened by A from 
other electric systems, such as conductor C, outside A.  

• Similarly, conductor C outside A is screened by A from B. 
 
 
 
 
 
 
 

• Thus conductor A acts like a screen or shield and the 
electrical conditions inside and outside the screen are 
completely independent of each other. 
 
 

  Conductor-Free Space Boundary Conditions 
• This is a special case of the conductor-dielectric 

conditions.  
• The boundary conditions at the interface 

between a conductor and free space can be 
obtained by replacing r by 1.  

• the electric field E is external to the conductor 
and normal to its surface.  

• Thus the boundary conditions are: 
 
 

• It should be noted again that E field must 
approach a conducting surface normally. 
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Conductor-Free Space Interface  

Magnetic Boundary Conditions 
• Define magnetic boundary conditions as the 

conditions that H or B must satisfy at the 
boundary between two different media.  

• Use Gauss's law for magnetic fields. 
 
 

• and Ampere's circuit law, 
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• Consider the boundary between two magnetic media 1 
and 2, characterized, respectively, by 1 and 1 as shown. 

•  Applying eq. (1) to the pillbox (Gaussian surface) 
       of Figure (a) and allowing h —> 0, we get, 
 
 
 
 
• This shows that the normal component of B is continuous 

at the boundary.  
• It also shows that the normal component of H is 

discontinuous at the boundary; 
• H undergoes some change at the interface. 

Boundary conditions between two magnetic media: (a) for B, (b) for H. 
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Similarly, apply Ampere’s law eq. (b) to the closed path 
abcda of Fig b where surface current K on the boundary 
is assumed normal to the path.  
This  obtains, 

As h --> 0, eq  leads to, 

This shows that the tangential component of H is also 
discontinuous. 

In the general case, becomes, 

where an12 is a unit vector normal to the interface and is directed from 
medium 1 to medium 2.  
If the boundary is free of current or the media are not conductors (for 
K is free current density), K = 0, 

Thus the tangential component of H is continuous while that of 
B is discontinuous at the boundary. 
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If the fields make an angle   with the normal to the 
interface, 

……..(1) 

……..(2) 

eqn(2)/eqn(1) …….. 

Law of refraction of Mag flux lines at a boundary  
with no surface current 

Solution of Wave Equations 

• Solve Maxwell's equations and derive EM 
wave motion in the following media: 
 
 
 
 
 



03-10-2020 

8 

Wave Propagation in Lossy Dielectrics 
 • A lossy dielectric is a medium in which an EM wave loses 

power as it propagates due to poor conduction. 
• A lossy dielectric is a partially conducting medium 

(imperfect dielectric or imperfect conductor) with  ≠ 0,  
• A lossless dielectric (perfect or good dielectric) is one in 

which  = 0. 
• Consider a linear, isotropic, homogeneous, lossy dielectric 

medium that is charge free (v = 0).  
• Maxwell's equations become:  (quashing time factor e j𝜔𝑡 ) 

…………….(1) 

…………….(2) 

…………….(3) 

…………….(4) 

Taking the curl of both sides of eq. (3) gives: 

…………….(5) 

to  LHS of eq. (5) and invoking eqs. (1) and (4), we obtain, 

where 

…………….(6) 

…………….(7) 

γ is called the Propagation constant of the medium. 
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• By a similar procedure, it can be shown that 
for the H field, 
 
 

• Equations (6) and (8) are known as 
homogeneous vector Helmholtz 's equations 
or simply vector Wave equations. 

• In Cartesian coordinates, eq. (6), is equivalent 
to three scalar wave equations, one for each 
component of E along ax, ay , and az . 

• Since y in eqs. (6) to (8) is a complex quantity, 
we may let, 

…………….(8) 

…………….(9) 

• From eqns (7) and (9), 
 
 
 

• From eqs. (10) and (11), we obtain, 

…………….(10) 

…………….(11) 

…………….(12) 

…………….(13) 
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Assume that the wave propagates along +az and that Es has 
only an x-component, 
 
 
 Substitute this into eq. (6) yields, 

= 0 

…………….(14) 

…………….(15) 

…………….(16) 

This is a scalar wave equation, a linear homogeneous 
differential equation, with solution, 

where Eo and Eo’ are constants.  
The field must be finite at infinity requires that Eo’ = 0.  
Since, e𝛾𝑧 denotes a wave traveling along -az whereas we 
assume wave propagation along az , Eo’ = 0.  
Whichever way we look at it, Eo’ = 0.  
Inserting the time factor e j𝜔𝑡  into eq. (17) and using eq. 
(9), we obtain, 

…………….(17) 

…………….(18) 

…………….(19) 
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E-field with x-component traveling along +z-direction at times t = 0 and t = Δt;  

Arrows indicate instantaneous values of E. 

and 𝜂 is a complex quantity known as the intrinsic impedance (in ohms) of the medium. 

Substituting eqs. (19) and (20) into eq. (21) gives, 

…………….(19) 

…………….(20) 

…………….(21) 

…………….(22) 

…………….(23) 
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From eqs. (19) and (23) as the wave propagates along az, 
it decreases or attenuates in amplitude by a factor e -αz, 
and hence 𝛼 is known as the Attenuation constant or 
Attenuation factor of the medium. 

It is a measure of the spatial rate of decay of the wave 
in the medium, measured in Nepers per meter (Np/m) or 
in decibels per meter (dB/m).  
An attenuation of 1 Neper denotes a reduction to e-1 of 
the original value whereas an increase of 1 Neper 
indicates an increase by a factor of e.  

…………….(23) 

If 𝛼 = 0, as is the case for a lossless medium and free 
space, 𝛼  = 0 and the wave is not attenuated as it 
propagates.  
The quantity β is a measure of the phase shift per length 
and is called the phase constant or wave number. 
 In terms of β, the wave velocity u and wavelength λ are 
given by, 

E and H are out of phase by η , at any instant of time 
due to the complex intrinsic impedance of the medium.  
Thus at any time, E  leads H (or H lags E) by η  

…………….(24) 
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The ratio of the magnitude of the conduction current 
density J to that of the displacement current density Jd in 
a lossy medium is, 

where tan  is known as the loss tangent and  is the 
loss angle of the medium 

…………….(25) 

…………….(26) 

PLANE WAVES IN LOSSLESS DIELECTRICS 

…………….(26) 

…………….(27) 

…………….(28) 
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PLANE WAVES IN FREE SPACE 

where c = 3 X 108 m/s, the speed of light in a vacuum.  
EM wave travels in free space at the speed of light.  
It shows that light is the manifestation of an EM wave.  
In other words, light is characteristically Electromagnetic. 

…………….(29) 

…………….(30) 

…………….(31) 

PLANE WAVES IN GOOD 
CONDUCTORS 

This is another special case 

A perfect, or good conductor, is one in which, 

…………….(32) 

…………….(33) 

…………….(34) 
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Therefore, as E (or H) wave travels in a conducting medium, its 
amplitude is attenuated 

The distance 𝛿, through which the wave amplitude decreases by a 
factor e-1(about 37%) is called Skin depth or Penetration depth of 
the medium;  

…………….(35) 

…………….(36) 

…………….(37) 

The skin depth is a measure of the depth to which an EM 
wave can penetrate the medium. 

Equation is generally valid for any material medium.  
For good conductors,  

…………….(38) 

…………….(39) 

…………….(40) 
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• The resistance is called the dc resistance, that 
is, 
 

• The skin depth is useful in calculating the ac 
resistance due to skin effect. 

Skin depth at high frequencies 

…………….(41) 

Define the surface or skin resistance Rs (in Ω/m2) as the 
real part of the  for a good conductor. 

Resistance of a unit width and unit length of conductor.  
It is equivalent to the dc resistance for a unit length of 
the conductor having cross-sectional area 1 x . 
Thus for a given width w and length l, the ac resistance 
is calculated, assuming a uniform current flow in 
conductor of thickness , i.e., 

…………….(42) 

…………….(43) 
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where S ≅ 𝛿𝑤.  
For a conductor wire of radius a (see diagram),  
w = 2a, so 

Since 𝛿 ≪ a at high frequencies, this shows that Rac ≫Rdc. 
The ratio of the ac to dc resistance starts at 1.0 for dc and 
very low frequencies and increases as frequency raises. 
The bulk of the current is nonuniformly distributed over a 
thickness of 5𝛿 of the conductor.  
But the power loss is the same as though it were uniformly 
distributed over a thickness of 𝛿 and zero elsewhere.  
So 𝛿 is clearly referred to as the skin depth. 

…………….(44) 
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Applied Electromagnetic Theory 

EC303 Module – 3 
 

POWER AND THE POYNTING VECTOR 
• Energy can be transported from one point to 

another point by means of EM waves.  
• The rate of such energy transportation can be 

obtained from Maxwell's equations: 
 
 
 

• Apply dot product on  both sides of eq. (2) 
with E gives, 

 

…….(1) 

…….(2) 

…….(3)  
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Use the identity,  
…….(4) 

Letting A = H and B = E,  in eqn(3)  

…….(5) 

Use eqn(1),  

…….(6) 

Work on eqn(5),  

 

 

 

…….(7) 

Rearranging terms and taking the Volume integral 
of both sides, 

 

Applying the Divergence theorem to the left-hand 
side gives, 

 
…….(8) 

Poynting's theorem 
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The various terms in the eqn (8) are identified using 
energy-conservation arguments for EM fields.  
1. The first term on the right-hand side of eq. (8) is 
interpreted as the rate of decrease in Energy stored in 
the Electric and Magnetic fields.  
2. The second term is the Power dissipated due to the 
fact that the medium is conducting ( ≠0).  
3. The quantity E x H on the left-hand side of eq. (8) 
is known as the Poynting vector P in watts/sq m(W/m2);  

P = E x H …….(9) 
It represents the instantaneous power density vector 
associated with the EM field at a given point.  
The integration of the Poynting vector over any closed 
surface gives the net power flowing out of that surface. 

 

Poynting's theorem states that the net power 
flowing out of a given volume v is equal to the time 
rate of decrease in the energy stored within v minus 
the conduction losses. 

Illustration of power balance for EM fields 
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It should be noted that P is normal to both E and H 
and is therefore along the direction of wave 
propagation ak for uniform plane waves. 

 …….(10) 

The fact that P points along ak causes P to be regarded 
derisively as a “Pointing" vector. 

Again, assume that, 

…….(11) 

…….(12)  

To determine the time-average Poynting vector Pave(z) 
(in W/m2), which is of more practical value than the 
instantaneous Poynting vector P(z, t), we integrate eq. 
(14) over the period T = 2/ω; that is, 

…….(13) 

…….(14) 

𝐏ୟ୴ୣ(z) =ଵ

୘
∫ 𝐏 𝐳, t dt

୘

଴
     …….(15) 

𝐏ୟ୴ୣ(z) =ଵ

ଶ
  Re (Es x Hs*)  

 
…….(16) 

This is equivalent to, 
 

P (z, t)  

P (z, t)  

 

 
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Substitute eq. (14) into eq. (15),  
 

𝐏ୟ୴ୣ(z)  …….(17) 

The total time-average Power crossing a given 
surface S is given by , 

Pୟ୴ୣ = 𝐏ୟ୴ୣ(z) . 
 

ୗ
  …….(18) 

 

 

Note the various Poynting quantities: 
 
P(x,y,z,t) Poynting vector in watts/m and is 
time varying.  
 
Pave(x,y,z) also in watts/meter is the time 
average of the Poynting vector.    
It is a vector but is time invariant.  
 
Pave  is a total time average power thro’ a 
surface in watts and  it is a scalar. 
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REFLECTION OF A PLANE WAVE 
AT NORMAL INCIDENCE 

• Earlier considered uniform plane waves traveling 
in unbounded, homogeneous media.  

• When a plane wave from one medium meets a 
different medium, it is partly reflected and partly 
transmitted.  

• The proportion of the incident wave that is 
reflected or transmitted depends on the 
constitutive parameters (, µ, ) of the two media 
involved.  

• Here assume that the incident wave plane is 
normal to the boundary between the media 

• Suppose that a plane wave propagating along 
the +z-direction is incident normally on the 
boundary z = 0 between medium 1 (z < 0) 
characterized by 1, µ1, 1 and medium 2 (z > 0) 
characterized by 2, µ2, 2 as shown. 
 

A plane wave incident normally on an interface between two different media. 
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Incident Wave 
•   (Ei , Hi) is traveling along +az in medium 1.  
         
•  Suppress the time factor ejt and assume that, 

…………..(19) 

 …………..(20) 

Reflected Wave 
(Er , Hr) is traveling along -az in medium-1.  

…………..(21) 

…………..(22)  

where Ers has been assumed to be along ax 
 
Assume that for normal incident, Ei , Er , and Et have 
the same Polarization. 
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Transmitted Wave 

(Et , Ht) is traveling along +az in medium-2.  

…………..(23) 

…………..(24)  

Ei0 , Er0 , and Et0 are, respectively, the magnitudes of 
the incident, reflected,  and transmitted electric fields 
at z = 0. 
The total field in medium 1 comprises both the 
incident and reflected fields, whereas medium 2 has 
only the transmitted field, that is, 

 

 

…………..(25) 

…………..(26) 
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• At the interface z = 0, the boundary conditions 
require that the tangential components of E 
and H fields must be continuous.  

• Since the waves are transverse, E and H fields 
are entirely tangential to the interface. 

……..(27 ) 

……..(28 ) 

From eqs. (27) and (28), we obtain 

……..(29 ) 

……..(30 )  

 
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We now define the reflection coefficient  and the 
transmission coefficient  from eqs. (29) and (30) as 

……..(31) 

……..(32 ) 

……..(33 ) 

……..(34 ) 

 

 

 

 

……..(35 ) 
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• The case considered above is the general case. 
• Let us now consider a special case when medium 

1 is a perfect dielectric (lossless) and medium 2 is 
a perfect conductor. 

• For this case, 2 = 0; hence,  = -1, and  = 0, 
showing that the wave is totally reflected.  

• This should be expected because fields in a 
perfect conductor must vanish, so there can be 
no transmitted wave (E2 = 0).  

• The totally reflected wave combines with the 
incident wave to form a standing wave.  

• A standing wave "stands" and does not travel. 
• It consists of two traveling waves (Ei and Er) of 

equal amplitudes but in opposite directions. 

Combining eqs. (19) and (21) gives the standing wave in 
medium 1 as, 

……..(36 ) 

……..(37 ) 

……..(38 ) 

 

 
 

 
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By taking similar steps, it can be shown that the 
magnetic field component of the wave is: 

When media 1 and 2 are both lossless we have 
another special case 1=0= 2. In this case, 1 and 
2 are real and so are and . 

……..(39 )  

CASE A 
• If 2 > 1 , Γ > 0, there is a standing wave in 

medium 1 but there is also a transmitted wave 
in medium 2.  

• However, the incident and reflected waves 
have amplitudes that are not equal in 
magnitude. 

•  It can be shown that the maximum values of 
|E1| occur at, 

……..(40 )  
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and the minimum values of |E1 | occur at, 

……..(40 )  

CASE B 
• If 2 < 1  , Γ < 0 , the locations of |E1| maximum 

are given by eq. (40), 
• Whereas those of | E1 | minimum are given by 

eq. (39). 
1. | H1| minimum occurs whenever there is | E1| 
maximum and vice versa. 
2. The transmitted wave in medium 2 is a purely 
traveling wave and consequently there are no 
maxima or minima in this region. 
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The ratio of | E1 |max to | E1 |min (or | H1 |max to | H1 
|min) is called the Standing-Wave Ratio s; that is, 

……..(41 )  

 ……..(42 ) 

• Since |Γ| ≤ 1 , it follows that 1 ≤s ≤ ∞. 
 
• The standing-wave ratio is dimensionless and it 
      is expressed in decibels (dB) as, 

……..(41 )  
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REFLECTION OF A PLANE WAVE 

AT OBLIQUE INCIDENCE 

• a more general situation than previous.  

• To simplify the analysis, we will assume that 

we are dealing with lossless media. 

• It can be shown that a uniform plane wave 

takes the general form of, 

……..(42) 
∴∴∴∴ 

• where r = xax + yay + zaz is the radius or 

position vector and k = kxax + kyay + kzaz is the 

wave number vector or the propagation 

vector.  

• Vector k is always in the direction of wave 

propagation.  

• The magnitude of k is related to ω according 

to the dispersion relation 

• Thus, for lossless media, k is essentially the 

same as β in the previous analysis. 

……..(43) 
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• With the general form of E as in eq. (42), 

Maxwell's equations reduce to, 

showing that, 

 (i) E, H, and k are mutually orthogonal, and  

(ii) E and H lie on the plane 

……..(44a) 

……..(44b) 

……..(44c) 

……..(44d) 

From eq. (44a), the H field corresponding to 

the E field in eq. (42) is, 

……..(45) 

Having expressed E and H , now consider the oblique 

incidence of a uniform plane wave at a plane boundary 

as shown.  
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• The plane defined by the propagation 

vector k and a unit normal vector a
n
 to the 

boundary is called the plane of incidence.  

• The angle θ, between k and a
n
 is the angle 

of incidence. 

• Again, both the incident and the reflected 

waves are in medium 1 while the 

transmitted or refracted wave is in 

medium 2. 

Oblique incidence of a plane wave: 
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illustration of the normal and tangential components of k. 

……..(46) 

Let 

• where ki , kr , and kt , with their normal and 

tangential components are shown in Fig. (b).  

• Since the tangential component of E must 

be continuous at the boundary z = 0 

……..(47) 
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The only way this boundary condition will be satisfied 

by the waves in eq. (46) for all x and y is that, 

• Condition 1 implies that the frequency is 

unchanged.  

• Conditions 2 and 3 require that the tangential 

components of the propagation vectors be 

continuous (called Phase matching conditions).  

• This means that the propagation vectors k
i
 , k

r 
, 

and k
t 
, must all lie in the plane of incidence.  

• Thus, by conditions 2 and 3,  

……..(48) 

……..(49) 

where θ
r
 is the angle of reflection and θ

t
 is the 

angle of transmission.  
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But for lossless media, 

……..(50) 

From eqs. (48) and (50a), it is clear that, 

……..(51) 

so that the angle of reflection θ
r
 equals the angle of 

incidence θ
i 
as in optics.  

Also from eqs. (49) and (50), 

 

……..(52) 

• where u = ω/k is the phase velocity.  

 

• Equation (52) is the well-known Snell's law , 

which can be written as, 

the refractive indices of the media. 

……..(53) 

……..(54) 
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• Based on these details on oblique 

incidence, specifically consider two 

special cases:  

 

� one with the E field perpendicular to 

the plane of incidence,  

 

� The other with the E field parallel to it. 

  

• Any other polarization may be considered 

as a linear combination of these two 

cases. 
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Electric Polarization  

Module – III Part-3 

Polarization  
• The polarization of uniform plane wave refers to the 

time varying behavior of the electric field strength 
vector at some fined point in space.  

• Consider a uniform plane wave travelling in the z 
direction, with E and H vectors lying in the x-y plane. 

•  If Ey=0 and only Ex is present, the wave is said to be 
polarized in the x -direction.  

• Similarly if Ex =0 and only Ey is present the wave is 
said to be polarized in the y-direction.  

• If both Ex and Ey are present and are in phase, the 
resultant electric field has a direction dependent on the 
relative magnitude of Ex and Ey .  
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• The angle which this direction makes with x 
axis will be constant with time.  
 
 

Linear polarization  
• If both Ex and Ey are present and are in phase, 

the resultant electric field has a direction at an 
angle of θ. 

•  If the direction of the resultant vector is 
constant with time, the wave is said to be 
linearly polarized.  
 

……..(1)  
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Elliptical Polarization  
  

• If both Ex and Ey are present and are not in 
phase, the traced locus of the tip of the 
resultant electric field vector will be an Ellipse. 

•  Such a wave is Elliptically Polarized. 
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Circular Polarization  

 
• If both Ex and Ey are present and are not in 

phase, have equal magnitudes and a /2 
phase difference, the locus of the resultant E 
is a circle and hence the wave is Circularly 
Polarized.  

• This is a special case of Elliptical Polarization. 
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The Electric field of a uniform plane wave travelling in  
the z-direction may be expressed in phasor form as , 

It may be expressed in time-varying form as , 

Since the wave travels in the z-dir, the Electric vector  
lies in the x-y plane.  

……..(2)  

……..(3)  

Here Er and Ei are  both  real vectors having different  
directions. 
 
At some point in space, say z=0, 

The time varying electric vector not only changes  
in magnitude, but also changes its direction as time varies. 

……..(4)  

……..(5)  

E0 is a complex vector, 
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Circular Polarization 

The x and y components of Electric field are equal in  
magnitude.  
The y component  leads the x component by 90 degrees. 
The components have amplitude Ea  
The electric field at z=0 is,  

The corresponding time-varying field is given by, 

……..(6)  

……..(7)  

……..(8)   

These components satisfy the relation,  

This indicates that the endpoint of                    traces out  
a circle of radius      as time progresses.  
The sense or direction of rotation is that of a left-handed  
screw advancing in the z-dir  
So the wave is left circularly polarized.  

……..(9)  
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Similarly right circular polarization is represented  
by the complex vector, 

A reversal of the sense of rotation is got by a 180-degree  
phase shift applied either to the  x-component or to the  
y-component of the Electric field.  

……..(10)  

Elliptical Polarization 

• Here x and y components of electric field differ in  
      amplitude. 
• Assume again that y component leads the x component  
     by 90 degrees 

• Here A and B are positive real constants. 
• The corresponding time-varying field is given by, 

……..(11)  

……..(12)  
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The components of the time-varying field are, 

Thus the endpoint of the vector traces out an ellipse  
and the wave is said to be Elliptically Polarized. 
The sense of Polarization is again left-handed.  

……..(13)  

……..(14)   

Elliptical Polarization is the most general form of  
Polarization. 
 
The Polarization is completely specified by the 
orientation and axial ratio of the polarization ellipse 
and by the sense in which the endpoint of the electric 
field vector moves  around the ellipse.  
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Transmission Lines 

EC 303 AET Module-IV 

Introduction 
• Power or information can be transmitted by guided 

structures.  
• Guided structures serve to guide (or direct) the 

propagation of energy from the source to the load. 
• Typical examples of such structures are Transmission 

lines and Waveguides. 
• Transmission lines are commonly used in Power 

Distribution (at low frequencies) and in 
Communications (at high frequencies). 

•  Various kinds of transmission lines like twisted-pair 
and coaxial cables (thinnet and thicknet) are used in 
computer networks such as the Ethernet and internet. 
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• A transmission line basically consists of two or 
more parallel conductors used to connect a 
source to a load.  

• The source may be a hydroelectric generator, 
a transmitter, or an oscillator; 

•  The load may be a factory, an antenna, or an 
oscilloscope, respectively.  

• Typical transmission lines include coaxial 
cable, a two-wire line, a parallel-plate or 
planar line, a wire above the conducting 
plane, and a  microstrip line. 
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• Note that each of these lines consists of two 
conductors in parallel.  

• Coaxial cables are used in Electrical 
Laboratories and in connecting TV sets to TV 
antennas.  

• Microstrip lines are particularly important in 
integrated circuits where metallic strips 
connecting electronic elements are deposited 
on dielectric substrates. 

TRANSMISSION LINE PARAMETERS 
• A transmission line can be analyzed in terms 

of its line parameters. 
• They are: 

–  Resistance per unit length R 
– Inductance per unit length L  
– Conductance per unit length G  
– Capacitance per unit length C  

• The line parameters R, L, G, and C are not 
discrete or lumped but distributed. 

• The parameters are uniformly distributed 
along the entire length of the line. 
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For each line, 

……………..(1) 
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• For each line, the conductors are 
characterized by c ,c and c  and the 
homogeneous dielectric separating the 
conductors is characterized by  , and .  

•  G ≠ ଵ

ோ
 ; R is the ac resistance per unit length 

of the conductors comprising the line and G is 
the conductance per unit length due to the 
dielectric medium separating the conductors. 

• The value of L is the external inductance per 
unit length; that is, L = Lext.  

• The effects of internal inductance are 
negligible at high frequencies at which most 
communication systems operate. 

TRANSMISSION LINE EQUATIONS 
• A two-conductor transmission line supports a 

TEM wave;  
• that is, the electric and magnetic fields on the 

line are transverse to the direction of wave 
propagation.  

• An important property of TEM waves is that 
the fields E and H are uniquely related to 
voltage V and current  I 

……………..(2) 
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Examine an incremental portion of length z of a two-
conductor transmission line.  
To find an equivalent circuit for this line and derive the 
line equations. 

• The model is in terms of the line parameters R, L, G, 
and C, and may represent any of the two-conductor 
lines.  

• The model is called the L-type equivalent circuit;  
• In the model, assume that the wave propagates along 

the +z-direction, from generator to the load. 
• By applying Kirchhoff's voltage law to the outer loop 

of the circuit,  

……..(3) 
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……..(4) 

……..(5) 

……..(6) 

……..(7a) 

……..(7b) 
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……..(8) 

……..(9) 

Take second derivative of eqn(8) and apply eqn(9) 

 

……..(10)  

where 

Similarly take second derivative of eqn(9)  
and make use of eqn(8),  

……..(12) 

……..(11) 

 

Eqns(10) and (12) are Wave Equations for V and I 
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•    in eq. (11) is the propagation constant (in per meter),  
•  is the attenuation constant (in Nepers per meter or  
                                                           Decibels per meter), and  
•  is the phase constant (in radians per meter).  
 
• The wavelength  and wave velocity u are, given by, 

……..(13) 

……..(14) 

The solutions of the linear homogeneous differential 
equations (10) and (12) are, 

……..(15) 

……..(16) 

• where V0
+, V0

-, I0
+, and I0

- are wave amplitudes;  
• the + and — signs, respectively, denote wave 

traveling along +z- and -z-directions, as is also 
indicated by the arrows. 
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Obtain the instantaneous expression for voltage as, 

……..(17) 

Z0 is analogous to , the intrinsic impedance of the 
medium of wave propagation. 
 By substituting eqs. (15) and (16) into eqs. (8) and (9) 
and equating coefficients of exponential terms, 
terms ez and e -z ,  

The characteristic impedance Z0 of the line is the 
ratio of positively traveling voltage wave to current 
wave at any point on the line. 

……..(19) 

……..(18) 

• where R0 and X0 are real and imaginary parts of Z0.  
• R0 should not be mistaken for R 
• while R is in ohms per meter; R0 is in ohms.  
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• The propagation constant  and the characteristic 
       impedance Z0 are important properties of the line                
       since they both depend on the line parameters R,          
       L, G, and C and the frequency of operation.  
 
• The reciprocal of Z0 is the Characteristic 
      Admittance Y0  that is,  
 
                   Y0 = 1/ Z0  
The transmission line considered so far is the lossy type 
in that the conductors comprising the line are imperfect 
(c ≠ ∞) and the dielectric in which the conductors 
are embedded is lossy ( ≠ 0).  

Consider two special cases of lossless transmission line 
and distortionless line. 

A.    Lossless Line (R = 0 = G) 

A transmission line is said lo be lossless if the 
conductors of the line are perfect c ≈ ∞) and the 
dielectric medium separating them is lossless ( ≈ ∞). 

For such a line, 

 ……..(20) 

This is a necessary condition for a line to be lossless. 
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Thus for such a line, subst. eq. (20) into eqs. (11), (14), 
and (19), 

……..(21a) 

……..(21b) 

……..(21c) 

 

 

 

B. Distortionless Line (R/L = G/C) 

• A signal normally consists of a band of frequencies; 
•  Wave amplitudes of different frequency 

components will be attenuated differently in a 
lossy line as  is frequency dependent. 

• This results in distortion. 

A distortionless line is one in which the attenuation 
constant  is frequency independent while the phase 
constant  is linearly dependent on frequency. 
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From the general expression for  and  in eq. (11), a 
distortionless line results if the line parameters are 
such that, 

……..(22) 

Thus, for a distortionless line, 

……..(23a)  

This shows that  does not depend on frequency 
whereas  is a linear function of frequency. 

Also, 

……..(23b) 

……..(23c) 
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Points to Ponder  

1. The phase velocity is independent of 
frequency because the phase constant 
 linearly depends on frequency.  

2. There is shape distortion of signals 
unless  and u are independent of 
frequency. 

3. u and Zo remain the same as for 
lossless lines. 
 

        Points to Ponder (Cont…) 

4. A lossless line is also a distortionless line, but 
a distortionless line is not necessarily 
lossless.  

5. Although lossless lines are desirable in power 
transmission, telephone lines are required to 
be distortionless. 
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An air line has characteristic impedance of 70 Ω and 
phase constant of 3 rad/m at 100 MHz. Calculate the 
inductance per meter and the capacitance per meter 
of the line. 

Sol: 

An air line can be regarded as a lossless line since                 
 ≈ 0. 

 

 

 

……..(P-1) 

……..(P-2) 
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Dividing eq. (P-1) by eq. (P-2) yields, 

From eq. (1), 
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INPUT IMPEDANCE, SWR, AND POWER 

Consider a transmission line of length l, characterized 
by  and Z0  connected to a load ZL .  
 
Looking into the line, the generator sees the line with 
the load as an input impedance Zin.  
 
Need to determine the following: 
 input impedance,  
 the standing wave ratio (SWR), and  
 the power flow on the line. 
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Let the transmission line extend from z = 0 at the 
generator to z = l at the load.  
Need to find the voltage and current waves using eqs. 
(15) and (16), i.e., 

……..(24) 

……..(25) 

where,  

Let,  ……..(26) 

 

 

……..(27a) 

……..(27b) 

If the input impedance at the input terminals is Zin , 
the input voltage V0 and the input current I0 are, 

……..(28) 

Given the condition for the lord,  

……..(29) 
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Substituting these into eqs. (24) and (25) gives, 

……..(30a) 

……..(30b) 

Determine the input impedance Zin at any point on line.  
At the generator, eqs. (24) and (25) yield, 

……..(31) 

Substitute eq. (30) into (31) and utilizing the fact that 

……..(32b) 

……..(32a) 

(lossy) ……..(33) 

Although eq. (33) has been derived for the input 
impedance Zin at the generation end, it is a general 
expression for finding Zin at any point on the line. 
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For a lossless line, 

(lossless) ……..(34) 

the input impedance varies periodically with distance l 
from the load.  
 
The quantity l in eq. (34) is called the Electrical length 
of the line and can be expressed in degrees or radians. 

 

• Define L as the voltage reflection coefficient (at 
the load).  

• It is the ratio of the voltage reflection wave to the 
incident wave at the load, i.e., 

 

……..(35)  

• Substitute V0
- and V0

+ from eq. (30) into eq. (35) 
and incorporating VL = ZL.IL gives, 

 ……..(36) 
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The voltage reflection coefficient at any point 
on the line is the ratio of the magnitude of 
reflected voltage wave to that of incident wave. 

  

But z = l - l’ 
 Substitute and combining with eq. (35), 
- 

 ……..(37) 

The current reflection coefficient at any point 
on the line is negative of the voltage reflection 
coefficient at that point. 

Thus, the current reflection coefficient at load is, 

Define the Standing Wave Ratio (SWR), s as, 

……..(38)  
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The input impedance Zin has maxima and 
minima that occur, respectively, at the maxima 
and minima of the voltage and current standing 
wave. 

……..(39a) 

……..(39b) 

 

 

• Consider a lossless line with characteristic 
     impedance of Zo = 50 Ω.  
• Assume that the line is terminated in a pure 

resistive load ZL = 100 Ω  
• Let Voltage at the load is 100 V (rms). 
 
• The conditions on the line are displayed.  
• Note from the figure that conditions on the 
     line repeat themselves every half wavelength. 
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Power on Transmission line 

A transmission is used in transferring power 
from the source to the load.  
The average input power at a distance l from the 
load is, 

the factor ଵ
ଶ
 is needed as the peak values are used 

instead of the rms values.  
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Assume a lossless line, substitute eqs. (24) and 
(25) to obtain, 

Since the last two terms are purely imaginary,  

 

 ……..(40) 

o 

• The first term is the incident power Pi while 
the second term is the reflected power Pr. 

• where Pt is the input or transmitted power. 
• The power is constant and does not depend on 

l  since it is a lossless line.  
• Also, notice that maximum power is delivered 

to the load when  = 0, as expected. 
• Consider special cases when the line is 

connected to load ZL = 0,  ZL = ∞ and  ZL = Zo.  
• They can easily be derived from general case. 
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A. Shorted Line (Zl = 0) 
For this case, eq. (34) becomes, 

……..(41a) 

……..(41b) 

Zin is a pure reactance, which could be 
capacitive or inductive depending on the 
value of l. 

 

 

B. Open-Circuited Line(Zl = ∞) 
For this case, substitute in eq. (34), 

……..(42a) 

……..(42b) 

Check  eqs. (41a) and (42a) , 

 

 

……..(43)  
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C. Matched Line 

The most desired case from practical view point.  
For this case, substitute condition in eq. (34), 

 ……..(44a) 

(ZL = Z0) 

 ……..(44b) 

So the whole wave is transmitted and there is 
no reflection.  
The incident power is fully absorbed by load.  
Thus maximum power transfer is possible when 
a transmission line is matched to the load. 
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One special case is that in which the line length 
is a half-wavelength, or an integer multiple 
thereof.  In that case, 

From eqn(34), the input impedance of a lossy line  
can be written as , 

……..(45) 

……..(46) 

 

 

Using this result in (45),  

• For a half-wave line, the equivalent circuit can be 
constructed simply by removing the line 
completely and placing the load impedance at 
the input.  

• This applies only if the line length is indeed an 
integer multiple of a half wavelength.  

• Once the frequency begins to vary, the condition 
is no longer satisfied, and (45) must be used in its 
general form to find Zin. 

……..(47)  
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Another important special case is that in which 
the line length is an odd multiple of a quarter 
wavelength: 

 
……..(48) 

Use this result in (45), 

……..(49)  

• An application of (49) is to the problem of 
joining two lines having different 
characteristic impedances.  
 

• Suppose the impedances are, (from left to 
right)          Z01 and Z03 
 

• At the joint, insert an additional line whose 
characteristic impedance is Z02 and whose 
length is λ/4.  
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So a sequence of joined lines whose impedances 
progress as Z01, Z02, and Z03, in that order.  
 
A voltage wave is now incident from line 1 onto 
the joint between Z01 and Z02.  
 
Now the effective load at far end of line 2 is Z03.  
The input impedance to line 2 at any frequency 
becomes, 

 ……..(50) 

Then, since the length of line 2 is λ/4, 

Reflections at the Z01–Z02 interface will not occur 
if Zin = Z01.  
 
Therefore, we can match the junction (allowing 
complete transmission through the three-line 
sequence) 

……..(51)  
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if Z02 is chosen so that, 

This technique is called Quarter-wave 
matching.  
 
It is limited to the narrow band of frequencies 
such that, 
           l = (2m + 1)λ/4 

……..(52) 

……..(53) 



TRANSMISSION LINES AND 

SMITH CHART  

EC303 MODULE-V 



THE SMITH CHART 
• The Smith chart is the most commonly used 

graphical technique.  

• It is basically a graphical indication of the 

impedance of a transmission line as one 

moves along the line.  

• The Smith chart is constructed within a circle 

of unit radius (|Γ| � 1) 

• The creation of the chart is based on relation, 

……..(1) 

……..(2) 



Unit circle on which the Smith chart is constructed. 



• Use a normalized chart in which all 

impedances are normalized with respect to 

the characteristic impedance Zo of the 

particular line under consideration. 

• For the load impedance Z
L 

for example, the 

normalized impedance z
L
 is given by, 

……..(3) 

……..(4a)  

 ……..(4b) 



Normalizing and equating components,  

……..(5a) 

……..(6) 

……..(5b) 

……..(7) 



Each of eqs. (6) and (7) is similar to, 

……..(8) 

which is the general equation of a circle of 

radius a, centered at (h, k).  

Thus eq. (6) is an r-circle (resistance circle) 

with, 

……..(9a) 

……..(9b) 



Radii and Centers of r-Circles for Typical Values of r 

  



Typical r-circles for r = 0,0.5, 1,2, 5, ∞ 



Similarly, eq. (7) is an x-circle (reactance circle) 

with, 

……..(10a) 

……..(10b) 

Radii and Centers of x-Circles for Typical Value of x 



Typical x-circles for x = 0, ± 1/2,±1, ±2, ±5, ±∞ 



While r is always positive, x can be positive (for 

inductive impedance) or negative (for capacitive 

impedance). 

Superpose the r-circles and x-circles, to obtain 

the Smith chart.  

The s-circles or constant standing-wave-ratio 

circles which are centered at the origin with s 

varying from 1 to ∞.  

The value of the standing wave ratio s is 

determined by locating where an s-circle 

crosses the Γ
r
 axis. Typical examples of s-circles 

for s = 1,2, 3, and ∞ are shown. 

 

















On the chart, locate a normalized impedance            

z = 2 + j , for example, as the point of 

intersection of the r = 2 circle and the x = 1 

circle. This is point P
1 

 

Similarly, z = 1 - j 0.5 is located at P
2
 where the 

r = 1 circle and the x = -0.5 circle intersect. 

 
The value of the standing wave ratio s is got 

 by locating where an s-circle crosses the Γ
r
 axis. 



             Points to Ponder : Smith chart 

 1. At point P
sc

 , r = 0, x = 0; that is, Z
L
 = 0 + j0 

showing that P
sc

 represents a short circuit on 

the transmission line.  

2. At point P
oc  

, r = ∞ and x = ∞, or ZL = ∞ +j ∞, 

which implies that Poc corresponds to an 

open circuit on the line. 

3. A complete revolution (360°) around the 

Smith chart represents a distance of λ/2 on 

the line.  

4. Clockwise movement on chart is regarded as 

moving toward generator (or away from the 

load) as shown by the arrow G. 







 

5. Similarly, counterclockwise movement on 

the chart corresponds to moving toward the 

load (or away from the generator) as 

indicated by the arrow L.  

6. Notice that at the load, moving toward the 

load does not make sense (because we are 

already at the load).  

7. The same can be said of the case when we 

are at the generator end. 

8. There are three scales around the periphery 

of the Smith chart.  



 

9. The scales are used in determining the 

distance from the load or generator in 

degrees or wavelengths.  

10. The outermost scale is used to determine the 

distance on the line from the generator end 

in terms of wavelengths.  

11. The next scale determines the distance from 

the load end in terms of wavelengths.  

12. The innermost scale is a protractor to 

determine θΓ; it can also be used to 

determine distance from load or generator.  



 

13. Since a λ/2 distance on the line corresponds 

to a movement of 360° on the chart, a             

λ distance on the line corresponds to a 720° 

movement on the chart. 

14. Vmax occurs where Zin,max is located on the 

chart and that is on the positive Γr axis or on 

OPOC  

15. Vmin is located at the same point where we 

have Zin,min on the chart; that is, on the 

negative Γr axis or on OPsc.  



 

16. Notice that Vmax and Vmin (or Zin,max and 

Zin,min) are λ/4 (or 180°) apart. 

 

 

17. The Smith chart is used both as impedance 

chart and admittance chart (Y = 1/Z). 

18. As admittance chart (normalized 

impedance y = Y/Y0 = g + jb), the g- and b-

circles correspond to r- and x-circles, 

respectively. 



Problems on Smith Chart 

Sol: Method 1: (Without the Smith chart) 





Method 2: (Using the Smith chart). 

 Γ =OP/OQ =2.7/7.8 = 0.346 



ZL=  60+j40 Ω,                 

Zo=  50Ω 

P(zL) = 1.2 +j0.8 

P’(yL) = 0.575-

j0.39 

VSWR = 2.1 

ΓΓΓΓ  =OP/OQ 

=2.7/7.8 =   0.346 

angle ΓΓΓΓ =56⁰ 

G(zx) = 0.5 +j0.03 



ZL=  60+j40 Ω,                 Zo=  50Ω 

P(zL) = 1.2 +j0.8 

P’(yL) = 0.575-j0.39 

VSWR = 2.1 

Γ  =OP/OQ =2.7/7.8 =   0.346 

angle Γ =56⁰ 
 

 

 

 

 

 

 

 

 

 
 

 
 



λ = u/f = 0.6 x 3 x 108 / (2 x 106) = 90 m 

l = 30 m =(30/90) λ = λ/3 = 0.333 λ 

or λ = 720ᵒ/3 = 240ᵒ 

Move towards generator in clockwise direction 
from point P to G exactly 0.333 λ or 240ᵒ away 
to point G.    At G read the value of impedance. 

 
 

Denormalize to get exact values: 

zx = 0.5 +j0.03 

Zx = 50(0.5 +j0.03) 

     = (25 +j1.5)Ω 
 

 yL  = 0.575-j0.39 

YL  = (1/50) x (0.575-j0.39) 

      = (0.0115 – j0.0078) S  

  
 

G(zx) = 0.5 +j0.03 



Γ
 
  =0.346  ∠56⁰ 

 



APPLICATIONS OF TRANSMISSION LINES 
• Transmission lines are specifically used for load 

matching and impedance measurements. 

• A. Quarter-Wave Transformer (Matching) 

• When Zo ≠	ZL, the load is mismatched and a 
reflected wave exists on the line. 

• However, for maximum power transfer, it is 
desired that the load be matched to the 
transmission line (Zo = ZL) so that there is no 
reflection (|Γ| = 0 or s = 1).  

• The matching is achieved by using shorted 
sections of transmission lines. 



Thus by adding a λ/4 line on the Smith chart, obtain the 

input admittance corresponding to a given load 

impedance. 

 

 



Also, a mismatched load Z
L
 can be properly matched 

to a line (with characteristic impedance Z
o
) by 

inserting prior to the load a transmission line λ/4 long 

(with characteristic impedance Zo') as shown.  

 

The λ /4 section of the transmission line is called 

a quarter-wave transformer because it is used for 

impedance matching like an ordinary transformer.              

Z'
o
 is selected such that (Z

in
 = Z

o
) 

Thus, the main disadvantage 

of the quarter-wave 

transformer is that it is a 

narrow-band or frequency-

sensitive device. 



Single-Stub Tuner (Matching) 

• The major drawback of using a quarter-wave 
transformer as a line-matching device is eliminated by 
using a single-stub tuner.  

• The tuner consists of an open or shorted section of 
transmission line of length d connected in parallel with 

the main line at some distance l from the load as 
shown. 

•  Notice that the stub has the same characteristic 
impedance as the main line.  

• It is more difficult to use a series stub although it is 
theoretically feasible. 

• An open-circuited stub radiates some energy at high 
frequencies.  

• As a result, shunt short-circuited parallel stubs are 
preferred. 



Matching with a single-stub tuner. 





Using the Smith chart to determine l and d of a shunt-shorted single-stub tuner. 



Due to the fact that the stub is shorted(y
L
’= ∞), 

determine the length d of the stub by finding the 

distance from Psc (at which z
L
’= 0 + j0) to the 

required stub admittance y
s
.  

 

For the stub at A, we obtain d = d
A
 as the distance 

from P to A', where A' corresponds to y
s
 = —jb 

located on the periphery of the chart.  

 

Similarly, obtain d = d
B
 as the distance from Psc to 

B' (y
s
 = jb). 



Obtain d = d
A
 and d = d

B
 corresponding to A and 

B, respectively, as shown.  

 

Note that d
A
 + d

B
 = λ/2 always.  

 

Since there are two possible shunted stubs, 

choose to match the shorter stub or one at a 

position closer to the load.  

 

Instead of having a single stub shunted across 

the line, we may have two stubs.  

 

This is called double-stub matching and allows 

for the adjustment of the load impedance. 



Problems on Stub Matching 
• A 100 Ω lossless transmission line is to be 

matched to a load of 100-j80Ω, utilizing a shorted 

stub assuming an operating frequency of 20MHz 

and wave velocity of 0.6c, where c is the speed of 

light in vacuum. 

• Make use of the attached Smith Chart and 

carefully estimate the Voltage Reflection 

Coefficient, Voltage Standing Wave Ratio, Load 

Admittance, Stub length, Distance of Stub from 

the load and the  required Stub Admittance. 

• Show the working steps in arriving at solution.  



Sol 

 

Or  



(b) determine the distance between the load (antenna 

in this case) y
L
 and the stub.  

 

At A, 



(c) Locate points A' and B' corresponding to stub 

admittance —j1.04 and j1.04, respectively. 

Determine the stub length (distance from Psc to A' and B') 



(d) From Smith Chart, s = 2.7 

 

This is the standing wave ratio on the line segment 

between the stub and the load s= 1 to the left of the 

stub because the line is matched,  

 

and s = ∞ along the stub because the stub is shorted 

at C 
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Parallel Plate Waveguide-                         
TE and TM Waves 

EC 303  Module VI 
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Parallel-Plate Waveguide 
• In the parallel-plate guide, two types of 

waveguide modes can be supported. 
• identify a Transverse Electric or TE mode when 

E is perpendicular to the plane of incidence  
• This positions E parallel to the transverse 

plane of the waveguide, as well as to the 
boundaries.  

• Similarly, a Transverse Magnetic or TM mode 
when the entire H field is in the y direction 
and is thus within the transverse plane of the 
guide.  

The wavevector k, indicates the direction of 
wave travel as well as direction of power flow. 

Wavevectors ku and kd are associated with 
the upward-and downward-propagating 
waves, respectively, and these have identical 
magnitudes, 
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• Note, for example, that with E in the y 
direction (TE mode), H will have x and z 
components.  

• Likewise, a TM mode will have x and z 
components of E. 

• it is not possible to achieve a purely TEM 
mode for values of  other than 90◦.  

• Other wave polarizations are possible that lie 
between the TE and TM cases, but these can 
always be expressed as superposition of TE 
and TM modes. 
 

PARALLEL-PLATE GUIDE ANALYSIS 
USING THE WAVE EQUATION 

• Analysis of the Waveguide is by use of  the Wave 
Equation, which need to be solved subject to the 
boundary conditions at the conducting walls. 

 

where k = nω/c 

• In TE modes , there is only a y component of E.  
• The wave equation becomes: 

………(1)  

………(2)   
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• We assume that the width of the guide (in the y 
direction) is very large compared to the plate 
separation d.  

• Therefore we can assume no y variation in the 
fields (fringing fields are ignored), and so, 

 
 

 
 

• where E0 is a constant, and where fm(x) is a 
normalized function to be determined (whose 
maximum value is unity). 

 

 

………(3)  

• We now substitute (3) into (2) to obtain, 
 
 

• The general solution is, 

………(4)  

………(5)   

 

next apply the appropriate boundary 
conditions to evaluate κm.  
conducting boundaries appear at x = 0 and                
x = d, at which the tangential electric field (Ey ) 
must be zero.  
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………(6)  

In Eq. (5), only the sin(κmx) term will allow the 
boundary conditions to be satisfied, so keep it 
and drop the cosine term.  
 
The x = 0 condition is automatically satisfied by 
the sine function.  
 
The x = d condition is met when we choose the 
value of κm such that, 

The final form of Eys is obtained by substituting 
fm(x) as expressed through (5) and (6 ) into (3), 

 ………(7)  

• An additional significance of the mode number m is 
seen when considering the form of electric field of (7).  

• Specifically, m is the number of spatial half-cycles of 
electric field that occur over the distance d in the 
transverse plane.  

• This can be understood physically by considering the 
behavior of the guide at cutoff.  

• the plane wave angle of incidence in the guide at cutoff  
is zero, meaning that the wave simply bounces up and 
down between the conducting  walls. 
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• The wave must be resonant in the structure, 
so the net round trip phase shift is 2mπ.  

• With the plane waves oriented vertically,                 
m = 0, and so κm = k = 2nπ/λcm.  

• So at cutoff, 

………(7)  

………(8)  

………(9)   

 

• The waveguide is simply a one-dimensional 
resonant cavity, in which a wave can oscillate 
in the x direction if its wavelength as 
measured in the medium is an integer 
multiple of 2d where the integer is m. 

• Having found the electric field, find the 
magnetic field using Maxwell’s equations.  

• obtain x, z components of Hs for a TE mode.  
• use the Maxwell equation, 

………(10)  
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• where, in the present case of having only a y 
component of Es , 

………(11)  

Solve for Hs by div both sides of (10) by −jωμ.  
 
Performing this operation on (11), we obtain 
the two magnetic field components: 

 

………(12)  

………(13)  

………(14)  

………(15)  
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………(16)  

 

 

where 

define the radian cutoff frequency for mode m as 
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A parallel-plate waveguide has plate separation d = 1 cm and is filled with teflon 
having dielectric constant r = 2.1. Determine the maximum operating frequency 
such that only the TEM mode will propagate. Also find the range of frequencies 
over which the TE1 and TM1 (m = 1) modes, and no higher-order modes, will 
propagate. 

Sol 

the cutoff frequency for the first waveguide 
mode (m = 1) 

In the parallel-plate guide of Example 1, the operating wavelength is λ = 2 mm. 
How many waveguide modes will propagate? 

EXAMPLE 2 

Sol 

For mode m to propagate, the requirement isλ < λcm. For the given 
waveguide 
and wavelength, the inequality becomes, 

Thus the guide will support modes at the given wavelength up to order m = 14. Since 
there will be a TE and a TM mode for each value of m, this gives, not including the 
TEM mode, a total of 28 guided modes that are above cutoff. 
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phase velocity of mode m 

energy will propagate at the group velocity, νg 

In the guide of Example 1, the operating frequency is 25 GHz. Consequently, 
modes for which m = 1 and m = 2 will be above cutoff. Determine the group delay 
difference between these two modes over a distance of 1 cm. This is the difference in 
propagation times between the two modes when energy in each propagates over the 
1-cm distance. 

EXAMPLE 3 

Sol 
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This computation gives a rough measure of the modal dispersion in the guide, applying 
to the case of having only two modes propagating.  
A pulse, for example, whose center frequency is 25 GHz would have its energy divided 
between the two modes.  
The pulse would broaden by approximately 33 ps/cm of propagation distance as the 
energy in the modes separates.  
If, however, we include the TEM mode (as we really must), then the broadening will be 
even greater.  
The group velocity for TEM will be c/√2.1. The group delay difference of interest will then 
be between the TEM mode and the m = 2 mode (TE or TM). We would therefore have, 

Simple numerical calculations on wave guides – Please work it out! 
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The Hollow Rectangular 
Waveguide 

EC303 AET Module- VI – Part-2 

Introduction 
• A transmission line can be used to guide EM energy 

from one point (generator) to another (load).  
• A waveguide is another way to achieve the same goal.  
• Transmission line can support only a transverse 

electromagnetic (TEM) wave, whereas a waveguide can 
support many possible field configurations.  

• At microwave frequencies (roughly 3-300 GHz), 
transmission lines become inefficient due to Skin Effect 
and Dielectric Losses. 

• Hollow Waveguides are used at that range of 
frequencies to obtain larger bandwidth and lower signal 
attenuation. 



11-11-2020 

2 

• A transmission line may operate from dc                    
(f = 0) to a very high frequency. 

• A waveguide can operate only above a certain 
frequency called the cutoff frequency and 
therefore acts as a high-pass filter.  

• Thus, waveguides cannot transmit dc, and 
they become excessively large at frequencies 
below microwave frequencies. 
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RECTANGULAR WAVEGUIDES 

• The propagation direction is along the z axis.  
• The guide is of width a along x and height b 

along y. 
• relate the geometry to that of the parallel-plate 

guide by thinking of the rectangular guide as 
two parallel-plate guides of orthogonal 
orientation that are assembled to form one unit. 

• a pair of horizontal conducting walls (along the x 
direction) and a pair of vertical walls (along y), 
all of which form one continuous boundary. 
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• In the parallel-plate guide, the TEM mode can 
exist, along with TE and TM modes.  

• The rectangular guide will support the TE and TM 
modes, but it will not support a TEM mode. 

•  Unlike the parallel-plate guide, there’s a 
conducting boundary that completely surrounds 
the transverse plane.  

• The nonexistence of TEM can be understood by 
recalling that any electric field must have a zero 
tangential component at the boundary.  

• This means that it is impossible to set up an 
electric field that will not exhibit the sideways 
variation that is necessary to satisfy this 
boundary condition. 

• Because E varies in the transverse plane, the 
computation of H through ∇ ×E = −jωμH must 
lead to a z component  of H, and so cannot 
have a TEM mode.  

• Cannot find any other orientation of a 
completely transverse E in the guide that will 
allow a completely transverse H. 
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Analysis of Rectangular Waveguide 

A rectangular waveguide with perfectly conducting walls, filled 
with a lossless material. 

• For a lossless medium, Maxwell's equations in 
phasor form become, 

…………………(1)  

…………………(2)  

Where,  …………………(3)  

the time factor is  e j𝜔𝑡   
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For the z-component, for example, eq. (1) becomes 

…………………(4)  

Eqn(4) can be solved by separation of variables 
(product solution) 

Let  …………………(5)  

where X(x), Y(y), and Z(z) are functions of x, y, and z. 

Substituting eq. (5) into eq. (4) and dividing by XYZ,  

…………………(6)   

 

Since the variables are independent, each term in eq. (6)  
must be constant, so the equation can be written as, 

…………………(7)  

where -kx
2, -ky

2, and 2 are separation constants.  
Thus, eq. (6) is separated as, 

…………………(8a)  

…………………(8b)  

…………………(8c)  
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 obtain the solution to eq. (8) as, 

…………………(9a)  

…………………(9b)  

…………………(9c)  

Substituting eq. (9) into eq. (5) gives, 

……………(10)  

As usual, assume that the wave propagates along the 
waveguide in the +z-direction, the multiplicative 
constant c5 = 0 because the wave has to be finite at 
infinity [i.e.,Ezs(x, y, z = ∞) = 0].  
 
Hence eq. (10) is reduced to, 

……………(11)  

where A1 = c1.c6  , A2 = c2.c6  , and so on.  
By taking similar steps, get solution of z-component of 
eq. (2) as,  

……………(12)  
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Instead of solving for other field component Exs Eys Hxs 
and Hys in eqs. (1) and (2) in the same manner, simply 
use Maxwell's equations to determine them from Ezs 
and Hzs .  
 
From 

Obtain 
……………(13a)  

……………(13b)  

……………(13c)  

……………(13e)  

……………(13d)  

……………(13f)  
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Express Exs  Eys  Hxs  and Hys in terms of Ezs and Hzs.  
For Exs for example, combine eqs. (13b) and (13c) and 
obtain, 

……………(14)  

From eqs. (11) and (12), it is clear that all field 
components vary with z according to e-z, that is, 

 

 

s 

 

Let  

 
Similar manipulations of eq. (13) yield expressions for 
Eys  Hxs  and Hys in terms of Ezs and Hzs. Thus, 

……………(15a)  

……………(15b)  
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……………(15c)  

……………(15d)  

……………(16)  Where, 

 

 

Points to Ponder  
• From eqs. (11), (12), and (15), notice that there are different 

types of field patterns or configurations.  
• Each of  distinct field patterns is called a Mode, with 4 different 

mode categories. 
• Ezs = 0 = Hzs (TEM mode): This is the Transverse Electro Magnetic 

(TEM) mode, in which both the E and H fields are transverse to 
the direction of wave propagation.  

• From eq. (15), all field components vanish for Ezs = 0 = Hzs.  
• So, a rectangular waveguide cannot support TEM mode. 

 
• Ezs ≠ 0, Hzs ≠ 0 (HE modes): This is the case when neither E nor 

H field is transverse to the direction of wave propagation. They 
are called hybrid modes. 
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Points to Ponder  

• Ezs = 0, Hzs ≠ 0 (TE modes): Here, the 
remaining components (Exs and Eys) of the 
electric field are transverse to the direction of 
propagation az.  

• Under this condition, fields are said to be in 
Transverse Electric (TE)  

    modes. 

TE mode Ez = 0 

Points to Ponder  

• Ezs ≠ 0, Hzs = 0 (TM modes): In this case, the H 
field is transverse to the direction of wave 
propagation. This is Transverse Magnetic (TM) 
mode. 

TM mode, Hz = 0 
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TRANSVERSE MAGNETIC (TM) MODES 
• For this case, the magnetic field has its 

components transverse (or normal) to the 
direction of wave propagation.  

• This implies that we set Hz = 0 and determine 
Ex ;Ey ;Ez ;Hx and Hy using eqs. (11) and (15) 
and the boundary conditions.  

• solve for Ez and later determine other field 
components from Ez.  

• At the walls of the waveguide, the tangential 
components of the E field must be 
continuous;  that is, 

……………(17a)  

……………(17b)  

……………(17c)  

……………(17d)  

Equations (17a) and (17c) require that A1 = 0 = A3 in eq. 
(11), so eq. (11) becomes, 

……………(18)  

where E0 = A2A4 
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Also eqs. (17b) and (17d) when applied to eq. (18) 
require that, 

……………(19)  

This implies that, 

…………(20a)  

…………(20b)  

…………(21)  

Substituting eq. (21) into eq. (18) gives, 

…………(22)   

 

Obtain other field components from eqs. (22) and (15) 
bearing in mind that Hzs= 0. Thus, 

…………(23a)  

…………(23b)  

…………(23c)  

…………(23d)  

…………(24)  

from eqs. (16) and (21). 
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Notice from eqs. (22) and (23) that each set of integers 
m and n gives a different field pattern or mode, 
referred to as TMmn mode, in the waveguide. 

Integer m equals the number of half-cycle variations in 
the x-direction, and integer n is the number of half-cycle 
variations in the y-direction.  
 
Notice from eqs. (22) and (23) that if (m, n) is (0, 0),         
(0, n), or (m, 0), all field components vanish.  
 
Thus neither m nor n can be zero.  
 
Consequently, TM11 is the lowest-order mode of all the 
TMmn modes. 

By substituting eq. (21) into eq. (16), obtain the 
propagation constant, 

Remember, 

…………(25)  

and  

CASE A (cut-off): 
If  

The value of w that causes this is called the cutoff 
angular frequency c; i.e., 

…………(26)  
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CASE B (Evanescent): 

If 

In this case, there is no wave propagation at all.  
These non-propagating or attenuating modes are said 
to be Evanescent. 

CASE C (propagation): 

If 

that is, from eq. (25) the phase constant  becomes, 

…………(27)  

This is the only case when propagation takes place as 
all field components will have the factor    

Thus for each mode, characterized by a set of integers 
m and n, there is a corresponding  cut-off frequency fc 
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The cutoff frequency is the operating frequency below 
which attenuation occurs and above which propagation 
takes place. 

The waveguide therefore operates as a high-pass filter. 
The cutoff frequency is obtained from eq. (26) as, 

…………(28)   

 

Where, 

Phase velocity of uniform plane wave in the lossless 
dielectric medium ( = 0, , ) filling the waveguide. 

The cutoff wave length  is given by, 
 

…………(29)   
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Note from eqs. (28) and (29) that TM11 has the lowest 
cutoff frequency (or the longest cutoff wavelength) of all 
the TM modes.  
 
The phase constant  in eq. (27) can be written in terms of 
fc as, 

 

…………(30)   

phase constant of uniform plane  
Wave  in the dielectric medium. 

Note that  for evanescent mode can be expressed in 
terms of fc , 

…………(30a)  

The phase velocity up and the wavelength  in the 
guide are,  

…………(31)  
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The intrinsic wave impedance of the mode is obtained 
from eq. (23) as ( = j) 

…………(32)  

 

 
where ' = ఓ

ఌ
 = intrinsic impedance of uniform plane 

wave in the medium.  

Note the difference between u', 'and ‘ and u, and .  
 
The quantities with prime are wave characteristics of the 
dielectric medium unbounded by the waveguide.  
 
For example, u' would be the velocity of the wave if the 
waveguide were removed and the entire space were 
filled with the dielectric.  
 
The quantities without prime are the wave 
characteristics of the medium bounded by the 
waveguide. 
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The integers m and n indicate the number of half-cycle 
variations in the x-y cross section of the guide. 
 Thus for a fixed time, the field configuration shown 
results for TM21 mode, for example. 

TRANSVERSE ELECTRIC (TE) MODES 
• In the TE modes, the electric field is transverse 

(or normal) to the direction of wave 
propagation. 

• set Ez = 0 and determine other field 
components Ex ; Ey ; Hx ;Hy ; and Hz from eqs. 
(12) and (15) and the boundary conditions.  

• The boundary conditions are obtained from 
the fact that the tangential components of the 
electric field must be continuous at the walls 
of the waveguide; i.e., 
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…………(33a)  

…………(33b)  

…………(33c)  

…………(33d)  

From eqs. (15) and (33), the boundary conditions  
can be written as, 

…………(34a)  

…………(34b)  

…………(34c)  

…………(34d)  

 
 
 

 

 

 

 
 

Imposing these boundary conditions on eq. (12) yields, 

…………(35)  

where Ho = B1B3.  
Other field components are easily obtained from eqs. 
(35) and (15) as, 

…………(36a)  

……(36b)  
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…………(36c)  

…………(36d)  

Notice that each set of integers m and n gives a different 
field pattern or mode, referred to as TEmn mode, in the 
waveguide. 
Integer m equals the number of half-cycle variations in 
the x-direction, and integer n is the number of half-cycle 
variations in the y-direction.  
Also notice that (m, n) cannot be (0, 0), all field 
components vanish but can be (0, 1), or (1, 0).  
Thus neither m nor n can be zero at same time.  
 

So, TE01 or TE10  is the lowest-order mode of all the TEmn 
modes depending on the values of a and b, the 
dimensions of the guide.  
TE10  is called the dominant mode of the waveguide and 
is of practical importance.  
The cutoff frequency for the TE10 mode is obtained from 
eq. (28) as (m = 1, n = 0), 

…………(37)  

and the cutoff wavelength for TE10 mode is obtained 
from eq. (29) as, 

…………(38)  
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• The dominant mode is the mode with the 
lowest cutoff frequency (or longest cutoff 
wavelength). 
 Also note that any EM wave with frequency                
f < f

𝐶ଵ଴
 (or 𝜆 > 𝜆𝑐ଵ଴) will not be propagated in 

the guide. 

The intrinsic impedance for TE mode is given by,  

From eq. (36), it is evident that ( = j), 

…………(39)  

Sol: 
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Those modes whose cutoff frequencies are ≤15.1 GHz 
will be transmitted i.e., 11 TE modes & 4 TM modes. 
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Cutoff frequencies of rectangular waveguide with a = 2.5b; 
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(a)  

(b) 
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(c)  

(d)  

(e)  

POWER TRANSMISSION AND ATTENUATION 

To determine power flow in the waveguide, we first find 
the average Poynting vector 

…………(40)  

In this case, Poynting vector is along z-direction so that, 

…………(41)  

where  = TE for TE modes or  = TM for TM modes 



17-11-2020 

16 

The total average power transmitted across the cross 
section of the waveguide is, 
 

…………(42)  

Of practical importance is the attenuation in a lossy 
waveguide.  
In our analysis thus far, we have assumed lossless 
waveguides ( = 0, c = ∞) for which  = 0,  = j. 

When the dielectric medium is lossy ( ≠ 0) and the 
guide walls are not perfectly conducting, (c ≠ ∞), 
there is a continuous loss of power as a wave 
propagates along the guide. 

In order that energy be conserved, the rate of decrease 
in Pave must equal the time average power loss PL per 
unit length, i.e., 

…………(43)  

…………(44)  
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…………(44)  

where c and d are attenuation constants due to 
ohmic or conduction losses (c ≠ ∞) and dielectric 
losses ( ≠ 0), respectively. 

…………(45)  

…………(46)  

Substituting eq. (46) into eq. (45) and squaring both 
sides of the equation, 

Equating real and imaginary parts, 

…………(47a)  

…………(47b)  
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Substituting eq. (48) into eq. (47b) gives 

…………(48)  

…………(49)  

The determination of c for TMmn and TEmn modes is 
time consuming and tedious.  
We shall illustrate the procedure by finding c for the 
TE10 mode.  
For this mode, only Ey Hx and Hz exist. 

For the dominant TE10 mode, m = 1 and n = 0, 

…………(50)  

…………(51a)  

 

 



17-11-2020 

19 

…………(51b)  

…………(51c)  

…………(51d)  

…………(52)   

The total power loss per unit length in the walls is, 

since the same amount is dissipated in the walls y = 0 and 
y = b or x = 0 and x = a.  
For the wall y = 0, 

…………(53)  

…………(54)  
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where Rs is the real part of the intrinsic impedance c of 
the conducting wall. 

where  is the skin depth.  
Rs is the skin resistance of the wall;  
 
For the wall x = 0, 

…………(55)  

…………(56)  

 

 

It is convenient to express c in terms of f and fc.  
After some manipulations, we obtain for the TE10 mode, 

The total attenuation constant  can be  easily obtained. 

…………(57)  

…………(58)   
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By following the same procedure, the attenuation 
constant for the TEmn modes (n ≠ 0) can be obtained as, 

and for the TMmn modes as,  

The total attenuation constant   can be  easily obtained. 

…………(59)  

…………(60)   

 


